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To model the ice-ocean boundary layer, we utilize the Navier-Stokes equations under the Boussi-
nesq approximation. The governing equations can be written as follows:

∂u

∂t
+ (u · ∇)u = − 1

ρ0
∇p + ν∇2u + gρ + F(z) (1)

∇ · u = 0 (2)

∂T

∂t
+ (u · ∇)T = κT∇2T (3)

∂S

∂t
+ (u · ∇)S = κS∇2S (4)

The first equation represents the momentum equation. Here, u = u(x, y, z) denotes the fluid
velocity in m/s, ρ0 is the reference density in kg/m3, p is the pressure in Pa, and ν is the kinematic
viscosity in m2/s. The term g represents the gravitational acceleration in m/s2, and ρ is the fluid
density given by:

ρ = ρ0 [1 − βT (T − T0) + βS(S − S0)]

In this expression:

• βT is the thermal expansion coefficient in 1/K,

• βS is the haline contraction coefficient in 1/(g/kg),

• T is the temperature in K,

• T0 is the reference temperature in K,

• S is the salinity in g/kg,

• S0 is the reference salinity in g/kg,

The second equation is the continuity equation, which ensures the incompressibility of the fluid.
The third and fourth equations describe the transport of temperature and salinity, respectively,
where κT is the thermal diffusivity and κS is the salinity diffusivity.
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Ice-ocean boundary conditions To compute the boundary conditions, we evaluate the fluxes
necessary to move the ice-ocean interface. When the ice is melting, freshwater is released into the
ocean, leading to an increase in the ocean temperature at the upper boundary and a decrease in
salinity.
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The temperature transport equation is given by:

∂T

∂t
+ (u · ∇)T = κT∇2T (5)

This can be rewritten as:

∂T

∂t
+ ∇ · (uT − κT∇T ) = 0 (6)

where uT represents the advective flux of temperature and −κT∇T represents the diffusive flux
of temperature.

Integrating over a control volume V with surface S, we get:∫
V

(
∂T

∂t
+ ∇ · (Tu− κT∇T )

)
dV = q · n (7)

Applying the divergence theorem:∫
V

∂T

∂t
dV +

∫
S

(Tu− κT∇T ) · n dS = q · n (8)

where n is the unit normal vector to the surface S and q is the heat flux vector (W/m2). For
mass conservation, the first term in the equation is zero. We can decompose the second term over
the four surfaces, each corresponding to the fluxes in the previous scheme. We impose periodic
boundary conditions on surfaces 1 and 3, which results in their fluxes canceling out. Additionally,
on the impermeable wall at the bottom (surface 2), the flux is zero. The only term that remains is:∫

S
(Tu− κT∇T ) · n dS4 = (q · n) (9)

This integral can be expressed as:∫
S

(Tu− κT∇T ) dx dy ez =
LxLy

⟨Lx⟩⟨Ly⟩
(uzT − κT∂zT ) (10)
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Since uz = 0, the only term that remains is −κT∂zT . This term can be compared to the heat
required to change the ice-ocean interface. At the ice-ocean interface, the phase change due to
melting or freezing is associated with the heat flux across the boundary as:

q · n = LfC
−1
p

∂h

∂t
(11)

where  Lf is the latent heat of fusion (J/kg) and h is the ice thickness loss (m). For melting,
LfC

−1
p

∂h
∂t represents the heat required to change the phase of the ice. Thus, the heat boundary

condition at the ice-ocean interface can be expressed as:

−κT∂zT = LfC
−1
p

∂h

∂t
(12)

We can follow a similar approach for salinity. At the ice-ocean interface, the phase change due
to melting or freezing is associated with the salt flux across the boundary, which is given by:

q · n = S
∂h

∂t
(13)

where SS is the salinity of the ocean. Thus, the salt boundary condition at the ice-ocean
interface can be expressed as:

−κS∂zS = S
∂h

∂t
(14)

Equating both boundary conditions, we find:

∂zS =

(
κT
κS

)(
Cp

Lf

)
S∂zT (15)
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Top Boundary Conditions

∂zS = (κT /κS)(Cp/Lf )S ∂zT

T = f(S)

Bottom Boundary Conditions

S = S∞

T = T∞
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