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To model the ice-ocean boundary layer, we utilize the Navier-Stokes equations under the Boussi-
nesq approximation. In the bulk, the governing equations can be written as follows:

∂u

∂t
+ (u · ∇)u = − 1

ρ0
∇p + ν∇2u + gρ + F(z) (1)

∇ · u = 0 (2)

∂T

∂t
+ (u · ∇)T = κT∇2T (3)

∂S

∂t
+ (u · ∇)S = κS∇2S (4)

The first equation represents the momentum equation. Here, u = u(x, y, z) denotes the fluid
velocity in m/s, ρ0 is the reference density in kg/m3, p is the pressure in Pa, and ν is the kinematic
viscosity in m2/s. The term g represents the gravitational acceleration in m/s2, and ρ is the fluid
density given by:

ρ = ρ0 [1 − βT (T − T0) + βS(S − S0)]

In this expression:

• βT is the thermal expansion coefficient in 1/K,

• βS is the haline contraction coefficient in 1/(g/kg),

• T is the temperature in K,

• T0 is the reference temperature in K,

• S is the salinity in g/kg,

• S0 is the reference salinity in g/kg,

The second equation is the continuity equation, which ensures the incompressibility of the fluid.
The third and fourth equations describe the transport of temperature and salinity, respectively,
where κT is the thermal diffusivity and κS is the salinity diffusivity.
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Ice-ocean boundary conditions Our setup assumes a two-dimension flow with a homogeneous
ice-ocean interface. The temperature at this interface is equal to the melting temperature (TM ).

We also assume that this interface moves with a velocity equal to uz
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z=h(t)

= ḣ(t).
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To describe the boundary conditions at the ice-ocean interface, we calculate the internal energy
of the water.

Ei(t) = Cp

∫ Lx

0
dx

∫ h(t)

0
dz T (x, z, t) (5)

where T (x, z, t) is the seawater temperature and Cp is the seawater heat capacity (J/(kgK)). When
the ice is melting, the ice thickness decreases and freshwater is released into the ocean, leading to
an increase in the internal energy. This variation is given by:

d

dt
Ei(t) = Cp

∫ Lx

0
dxT (x, h(t), t) ḣ(t) + Cp

∫ Lx

0
dx

∫ h(t)

0
dz ∂tT (x, z, t) = LfLxuz (6)

where  Lf is the latent heat of fusion (J/kg). We can write this expresion as:∫ Lx

0
dx

∫ h(t)

0
dz ∂tT (x, z, t) =

Lf

Cp
Lxuz −

∫ Lx

0
dxT (x, h(t), t) ḣ(t) (7)

Therefore, ∫ Lx

0
dx

∫ h(t)

0
dz ∂tT (x, z, t) =

Lf

Cp
Lxuz − LxTM ḣ(t) (8)

On the other hand, the temperature transport equation at the ice boundary is given by:

∂T

∂t
+ ∇ · (uT − κT∇T ) = 0 (9)

where uT represents the advective flux of temperature and −κT∇T represents the diffusive flux
of temperature. Integrating over a control volume V with surface S, we get:∫

V

(
∂T

∂t
+ ∇ · (Tu− κT∇T )

)
dV = 0 (10)

Applying the divergence theorem:
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∫
V

∂T

∂t
dV +

∫
S

(Tu− κT∇T ) · n dS = 0 (11)

where n is the unit normal vector to the surface S. For a control volume where the surface S
is aligned with the z-axis, the surface integral becomes:∫

V

∂T

∂t
dV +

∫ Lx

0
dx (Tu− κT∇T ) · ez = 0 (12)

Thus, ∫
V

∂T

∂t
dV + LxTMuz − LxκT∂zT = 0 (13)

Replacing the term
∫
V

∂T
∂t dV with the previously derived result and uz = ḣ(t), the expression

follows as:

Lf

Cp
Lxuz − LxTM ḣ(t) + LxTM ḣ(t) − LxκT∂zT = 0 (14)

Finally, the heat boundary condition at the ice-ocean interface can be expressed as:

−κT∂zT =
Lf

Cp
ḣ(t) (15)

We can follow a similar approach for salinity. At the ice-ocean interface, the phase change due
to melting or freezing is associated with the salt flux across the boundary, which is given by:

−κS∂zS = S
∂h

∂t
(16)

where S is the salinity of the ocean.
Equating both boundary conditions, we find:

∂zS =

(
κT
κS

)(
Cp

Lf

)
S∂zT (17)
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∂zS = (κT /κS)(Cp/Lf )S ∂zT

T = TM = T (S, Pb)

Bottom Boundary Conditions

S = S∞

T = T∞
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