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ABSTRACT
This thesis analyses the dynamics of small complex objects immersed in a turbulent environment. Turbulent
flows are akin to apparent random fields, that usually display very non-Gaussian and fluctuating statistics,
and which are known to enhance the mixing and the transport of the objects that they carry. Here, we
focus on the transport of small complex particles, which are characterized by a non-trivial interplay between
their mass, their shape and their rheology. Our aim is to gain a physical understanding on how turbulent
fluctuations prescribe the dynamics of such complex particles, and lead to various physical phenomena,
including preferential concentration, their deformation or catastrophic events such as their fragmentation.
Studying such phenomena is relevant for both industrial and sustainability issues. For instance, while volcanic
ash has direct impacts for the commercial flight industry, the blooming of diverse types of species such
as jellyfishes or phytoplankton has consequences both for the maintenance of power plants and for the
thermodynamics of our planet.

Our approach relies on a systematic use of massive numerical simulations of the Navier-Stokes equations to
generate homogeneous isotropic turbulence at high Reynolds number, and analyze in details the statistics
of various types of particles such as inertial spheroids and flexible fibers. For small inertial spheroids, our
numerical work shows that the translational and the rotational motion are essentially decoupled. While the
translational motion can be described by the motion of a sphere with a suitably defined effective mass, the
rotational dynamics displays more intricate features. This reflects in the statistics of the rotation rate and
in the concentration properties. Conversely to translational motion, the rotational dynamics is therefore
non-universal and depends on the specific shape of the spheroids.

For small inertialess fibers, which constitute a paradigmatic example of flexible elongated particles, we find
that the dynamics is most of the time closely resembling that of a stiff rod. Yet, in very rare and intermittent
episodes, the fibers experience violent buckling events, which correlate to strong local compressions exerted
by the local turbulent flow. Besides, detailed statistical investigations reveal that flexibility also produces
misalignments of the fibers, e.g. deviations in the statistics of the orientation compared to the dynamics of
a completely stiff rod. Our most salient observation is that the coupling between such flexible fibers and
the turbulence can be phenomenologically modeled in terms of various activation processes, both for the
buckling rate and for the misalignments statistics.

We finally investigate scenarios for turbulent fragmentation of brittle fibers. To that end, we implement in our
numerics two mechanisms leading to the fibers breaking in smaller pieces, either because of tensile failure or
because of flexural failure. We sketch a stochastic description of such violent events that paves the way to
better parametrization of turbulent-induced fragmentation of brittle material in industrial codes.

Keywords: Turbulent flow, complex particles, Lagrangian description, fibers, spheroids, fragmentation.

Université Côte d’Azur i



RÉSUMÉ
Cette thèse analyse la dynamique de petits objets complexes immergés dans des environnements turbulents.
Les champs turbulents peuvent être vus comme des champs aléatoires très fluctuants, dont les statistiques
sont en général fortement non-Gaussiennes et se caractérisent par la présence de fluctuations très violentes,
tant du point de vue Eulérien que Lagrangien. En pratique, la turbulence est le mécanisme dominant régissant
le transport et le mélange de matière aux échelles humaines, industrielles et planétaires. Dans leurs détails,
les propriétés statistiques du transport turbulent dépendent de la nature des particules considérées. Ici, nous
nous concentrons sur le transport de petites particules complexes, qui sont caractérisées par une interaction
non triviale entre leur masse, leur forme et leur rhéologie. Notre objectif est d’acquérir une compréhension
physique de la façon dont les fluctuations turbulentes prescrivent la dynamique de ces particules complexes,
et se manifestent au travers à la fois des phénomènes collectifs comme la concentration préférentielle, ou des
phénomènes individuels allant de la déformation de particules jusqu’à leur fragmentation. Ces manifestations
physiques de la turbulence ont des conséquences tant au niveau industriel que du développement durable. Un
exemple bien connu du secteur aéronautique commercial est celui de la gestion des risques liés au transport
atmosphérique de cendres volcaniques sur des échelles continentales. Un exemple moins connu est celui de la
floraison de méduses ou de phytoplancton dans des environnements maritimes, un phénomène spectaculaire
susceptible d’avoir des conséquences à la fois sur la maintenance des circuits de refroidissement des centrales
thermiques, et sur la thermodynamique de la Terre.

Nos recherches s’appuient sur des simulations numériques massives et systématiques basées sur l’intégration
directe des équations de Navier-Stokes incompressibles, ce pour générer une turbulence isotrope homogène
à très haut nombre de Reynolds. A partir de ces simulations, nous analysons en détail les statistiques de
différents types de particules tels que des sphéroïdes inertiels ou des fibres flexibles, susceptibles ou non de
se casser. Pour les sphéroïdes, nos travaux montrent que les dynamiques translationnelles et rotationnelles
sont essentiellement découplées. Alors que le mouvement de translation se rattache à celui d’une sphère
avec une masse effective convenablement définie, la dynamique de l’orientation présente des caractéristiques
plus complexes. Cette complexité se reflète dans les statistiques du taux de rotation et dans les propriétés de
concentration. Ainsi, et à l’inverse du mouvement de translation, la dynamique de rotation n’est pas universelle
et dépend de la forme spécifique des particules, ici caractérisée par différents rapports d’aspect.

Pour les fibres, qui sont un exemple type de particules allongées flexibles, nous constatons que leur dynamique
est qualitativement très semblable à celle d’une tige rigide, en tout cas pour la plupart du temps. En des
occasions très rares et intermittentes, nous observons en effet que les fibres flambent violemment, et ces
événements se corrèlent aux fortes compressions locales exercées par le fluide turbulent. En outre, les
statistiques détaillées de l’orientation des fibres diffèrent sensiblement des statistiques de tiges parfaitement
rigides, même en dehors de ces événements de flambages. Ces déviations peuvent être comprises comme des
“anomalies d’alignement” causées par la flexibilité. Notre observation principale est le fait que le couplage
entre les fibres et la turbulence peut se modéliser en termes de différents processus d’activation, qui rendent
compte à la fois des statistiques du flambage et des anomalies de l’alignement.

Nous étudions enfin des scénarios de fragmentation dus à la turbulence. À cette fin, nous implémentons dans
nos codes numériques deux mécanismes de rupture distincts, à savoir un mécanisme de rupture par flexion
et un mécanisme de rupture par tension. Nous esquissons un cadre stochastique de tels événements catas-
trophiques, qui justifie l’usage d’équations cinétiques du type Smoluchowski pour la description statistique
de la fragmentation en temps long, et ce malgré la présence des corrélations temporelles non triviales dans les
fluctuations turbulentes Lagrangiennes. Cette description ouvre des perspectives pour mieux quantifier la
fragmentation des matériaux fragiles dans les codes utilisés pour la prévention des risques dans des cadres
industriels, et en particulier dans le Code Saturne développé par EDF.

Mot-clefs: Écoulements turbulents, particules complexes, description Lagrangienne, fibres élastiques,
sphéroïdes, fragmentation.
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CHAPTER 1. INTRODUCTION

1 | Introduction

Contents
1.1 Particles in fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Complex particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Heavy anisotropic particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.1 Heavy spherical particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.2 Anisotropic particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Flexible elongated particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4.1 Fibers in viscous fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4.2 Fibers in turbulence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.5 Heavy flexible elongated particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.6 Scope and layout of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.1 Particles in fluids
Turbulence in nature. The word turbulence comes from the Latin “turba” meaning disorder, tumult or
crowd. In its scientific meaning, it describes “certain complex and unpredictable motions of a fluid” which
materialize for example in “ the volutes of smoke from a cigarette, the elegant arabesques of cream poured
into coffee and the vigorous eddies of a mountain stream” (Benzi R. and Frisch U., 2010). It has been
evidenced long ago that turbulent fluctuations enhance the transport and mixing of particles (Taylor, 1922;
Richardson, 1922): Above centimetric scales, small particles suspended in the air diffuse several orders of
magnitude faster than prescibed by their molecular diffusivity. As a rough estimate, Lewis Fry Richardson
estimates the turbulent diffusion in the atmosphere as 0.2`4/3 with ` expressed in cm (Davidson et al., 2011;
Richardson, 1922). Richardson’s formula implies that the turbulent diffusion is already a thousand times
more efficient than Brownian diffusion on metric scales, and ten million times more efficient on kilometric
scales. As such, turbulence is a fundamental ingredient of nature, that plays a crucial role in shaping our
planet and mitigating the human activities.

At the time of completion of this thesis, where the deadly COVID-19 pandemic has triggered new
standards in social distancing in most of the countries around the globe, it has probably become clear for a
large fraction of the population, that the propagation of diverse types of infectious objets within the air, from
micron-size aerosol to droplets particles, is a key issue in driving the dynamics of airborne pathogens between
human beings. While standard epidemiological studies rely on population models and ad-hoc statistical fitting
to estimate the propagation of a disease among a given crowd (Li et al., 2020; Gross et al., 2020; Masrur et al.,
2020), realistic quantitative estimates of transmission risks in various social configurations require clarifying
the physics beneath airborne transmissions. Not surprisingly, this physics involves turbulent transport, and
this has been demonstrated explicitly in a series of numerical and experimental studies (Bourouiba et al., 2014;
Verma et al., 2020; Prather et al., 2020). As an illustrative example, Fig. 1.1 shows a schematic representation
of aerosol particles and experimental results of droplets with sizes of the order of micrometers propagating in
a turbulent environment.
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1.1. PARTICLES IN FLUIDS CHAPTER 1. INTRODUCTION

Figure 1.1: Left panel: Illustration of the propagation of aerosol particles in a turbulent environment. Right panel: Cough
droplets from violent expirations in a turbulent environment (©Bourouiba Group MIT 2020). Images taken from Verma
et al. (2020) and Bourouiba et al. (2014).

Naturally, apart from dictating reliable social-distancing rule at the scale of an individual (Lohse,
2020), turbulence also shapes the transport of matter and energy on larger scales with clear industrial and
economic consequences. For example, atmospheric turbulence may propagate hazardous material such as
volcanic ash on continental scales within days, with direct impact on the commercial flight industry. Volcanic
ash consists of small millimetric-fragments of rock and glass as shown in the left panel of Fig 1.2, which
may lead to the engine failures of commercial flights (Mecikalski et al., 2007; Del Bello et al., 2015). One
may recall that in 2009, this risk had the European sky shut down for close to a month after the violent
eruption of the small Icelandic Volcano Eyjafjatallökull (Winker et al., 2012; NCAS, 2010). In the oceans,
turbulent transport of micro-particles of plastic origin (Thompson, 2015; Kukulka et al., 2016) generate
large-scale pollution. The microplastics are very small piece of plastic debris that tend to accumulate in
marine environments. Ocean and lakes present high levels of plastics of the order of millimetres, almost
imperceptible to the human eye. They are coming from a variety of sources, including cosmetics, clothing, and
industrial processes. These small pieces of plastic are the result of the material fragmentation due to several
factors (GESAMP, 2015). The most common factor, it is their degradation by solar UV radiation. However,
these small debris of plastic can be produced also by the forces involved in a turbulent flow (Ballent et al.,
2012; NOAA, 2020). They constitute a huge source of water pollution, with consequences on availability of
drinking water for humans (Koelmans et al., 2019), and on the aquatic food chain.

Beyond transport, turbulent fluctuations conspire in generating extremely heterogeneous patterns of
concentration and temperature in the ocean, hereby triggering or at the very least conspiring to the blooming
of diverse types of particles on scales from kilometric to planetary. An example is the blooming of jellyfishes
observed in early 2020 away from the coast of the Philippines islands (see the right panel of Fig. 1.2),
where Jellyfishes seem to be organized in a random spatial configuration. Such blooming can have dramatic
industrial consequences. For instance, in 2007 in Scotland, two reactors of a nuclear plant had to be stopped
from functionning: Jellyfishes had there been found to obstruct the cooling water filters, compromising the
safety standards of the plants (Reuters, 2020). Of course, an assembly of jellyfishes swimming in the ocean is
an example of a complex system, whose collective behavior is shaped not only by the random fluctuations
of their living environment but also by their active nature, the presence or absence of certain nutrients, the
presence of predators, the temperature, etc.

Université Côte d’Azur 2



1.1. PARTICLES IN FLUIDS CHAPTER 1. INTRODUCTION

Figure 1.2: Left panel: Sarychev Volcano (Kuril Islands, northeast of Japan) in an early stage of eruption. Image
taken from NASA (2009). Right panel: Screenshot of a bloom of jellyfishes observed in early 2020 in the coast of the
Philippines islands. Image taken from Thiaville (2020).

This kind of large-scale blooming favored by turbulence impacts not only the industry, but also the
sustainability of Planet Earth. As an example, one can mention the role of turbulence on the life-cycle of
certain aquatic species such as phytoplankton. The phytoplankton are microscopic organisms, which, like
plants, use chlorophyll to capture sunlight and undergo photosynthesis. In the oceans, the most typical species
are the diatoms and the coccolithophores (see Fig. 1.3). Those small microorganisms grow beneath the
surface in Nordic waters and have important collective effects in regulating the concentration of CO2 within
the ocean and in the thermodynamical balance of the planet (Abraham, 1998; Estrada and Berdalet, 1997;
Durham et al., 2013; Barton et al., 2014; Sengupta et al., 2017). Turbulence appears in full sight beneath the
spectacular patterns exhibited by “phytoplankton blooms” in oceans (Obata et al., 1996; Boyd et al., 2000;
Arrigo et al., 2012). This phenomenon consists in a fast, explosive, growth of the phytoplankton in aquatic
environments and is visible because the phytoplankton reflects the light.

Figure 1.3: Left panel: Diatoms phytoplankton algae in the ocean. Right panel: Diversity of coccolithophores: a)
Coccolithus pelagicus, b) Rhabdosphaera clavigera, c) Syracosphaera pulchra d) Umbellosphaera irregularis and e)
Gladiolithus flabellatus. Imagen taken from NASA (2015) and Wikipedia (2020a).

Fig. 1.4 shows an example of large-scale bloomings of those microorganisms, as photographed by
a satellite from NASA in the Barents and in Baltic sea. There, the assembly of phytoplankton traces the
edges of a kilometer size vortex, as well as more complex structures. The variations in brightness and color is
related to the concentration of phytoplankton and to the depth in the oceans. It has been argued that collective
blooms of such simple algae may be key in scenarios of evolution of life (Glibert et al., 2018; IISD, 2017).
The patterns exhibited by the phytoplankton look very much alike the patterns observed either on controlled
experiments of passive transport by chaotic flows (left panel of Fig. 1.5), or to the direct numerical simulations
of passive temperature fields advected by turbulent flows (right panel of Fig. 1.5).
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1.1. PARTICLES IN FLUIDS CHAPTER 1. INTRODUCTION

Figure 1.4: Top panel: phytoplankton bloom in the Barents sea. NASA image courtesy Norman Kuring, NASA Ocean
Color Group (NASA, 2010). Bottom panel: summer blooms in the Baltic sea. Image taken from NASA (2018).

The blooms of phytoplankton have an impact on the underlying ecosystems. In a balanced ecosystem,
those microorganisms provide nutrient and food for a large range of systems, but in a huge quantity they
induce damaging effects. Studies show that such blooms lead to the formation “dead zones”, because the
phytoplankton consumes huge quantities of nutrients in the oceans, hindering the proliferation of other kinds
of life in the seas (NASA, 2010). In addition, blooms of phytoplankton can prevent light from reaching
organisms that are lower in the water column.

Turbulence in computers. A common feature to the examples of turbulent mixing and transport mentioned
above is their apparent random nature and often hazardous consequences, as well as the extreme regimes of
flow parameters that they involve. To understand and model transport of matter in turbulent environments,
it seems extremely natural to rely on computer simulations, as the fluid equations at the origin of turbulent
motion are known and can be simulated using numerics. Anticipating on Chapter 2, it turns out that while
fluid equations such as the Navier-Stokes equations are indeed a powerful tool towards that end, their practical
use is often limited to the range of parameters relevant for daily life turbulence only, rather than industrial,
atmospheric, or oceanic turbulence. For that reason, industrial codes trying to reach relevant regimes of
parameters have to rely on small-scale parametrizations, in order to simulate turbulent fluids at scales larger
than particle sizes. If one wants to incorporate turbulent fluctuations for the transport, those codes need to
rely on stochastic models coupling fluid structures and the dynamics of the particles (Wilson and Sawford,
1996; Jones et al., 2007; Thomson, 1990; Minier and Peirano, 2001; Bossy et al., 2016). Computational
fluid dynamics (CFD) softwares such as Code Saturne of EDF (EDF, 2020), use approximations from

Université Côte d’Azur 4



1.2. COMPLEX PARTICLES CHAPTER 1. INTRODUCTION

Reynolds-Averaged models (RANS models) to Large-Eddy Simulation (LES models). In order to simulate
the Navier-Stokes equations for 2D, 2D-axisymmetric and 3D flows, steady or unsteady, laminar or turbulent,
incompressible or weakly dilatable, isothermal or not, with transport of scalars if required.

In order to derive faithful models, one needs to gain a fundamental knowledge on the statistics of
turbulent transport. This has motivated numerous studies in that field both from experimental and numerical
viewpoint (Bec et al., 2005; Mordant et al., 2002; Monchaux et al., 2012; Salazar et al., 2008). Obviously, the
detailed description of transport of particles and of concentration patterns is largely dependent not only on
the type of turbulence, but also on the type of particles (Voth and Soldati, 2017; Marchioli and Soldati, 2013),
which may exhibit various degrees of complexity.

Figure 1.5: Left panel: Radiometrically inferred distribution of tracer particles after experiment has settled into steady-
state behavior for a given iteration. Image taken from Sommerer and Ott (1993). Right panel: Passive scalar at TL/8 in
the x − y plane, using the 3D simulation with 40963 collocation points. Courtesy of C. Siewert.

1.2 Complex particles
The notion of complex particles is very large and as such slightly ill-defined. In our view, any particle that is
not a tracer could be qualified as “complex”, but obviously, not being a tracer is not an unambiguous defining
property! One can distinguish several features that contribute to the degree of complexity of a particle, among
which their active or passive nature, their coupling with the external environments and their coupling among
one another.

Active vs passive particles. In full generality, there is a two-way coupling between the fluid and the
particles within it: The fluid prescribes the particle dynamics, which in turn alters the flow. When such a
two-way coupling is taken into account in models, we refere to the particle as an active particle. Among
mechanisms that make the particle alter their environment, one can think of boundary effects due to their
finite-size, or presence of internal source of energy. Please note, that our definition of active particles is
larger than the usual definition used in statistical physics, for which active particles are particles with an
internal source of energy (Guzman L. and Soto, 2011). Conversely, when the particle does not alter the
flow, it is called a passive particle. In reality, there is no such object as a passive particle. Yet, modeling
particles as being passive is a major simplifying assumption and is physically justified when dealing with
very small or very thin objects that are sufficiently dilute within the flow. As an illustration, two kinds of
active particles are represented in Panels (b) and (c) of Fig. 1.6, together with an example of a passive particle
such as pollen particles in Panel (a). In Panel (b) a human spermatozoo acts as an active particle with its own
energy source. The fluid around it is forced with a typical velocity of U ≈ 200 µms−1 and a typical length of
L ≈ 50 µm, achieving a Reynolds number of Re ≈ 10−2 (Lauga and Powers, 2009). Panel (c) features the
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former professional swimmer Michael Phelps spanning a scale L = 1.93 m, who needs to propel the fluid
at approximately U ≈ 2 ms−1, to be competitive when swimming the 200 m freestyle competition, hereby
generating a Reynolds number of Re ≈ 106.

(a) (b) (c)

Figure 1.6: Panel (a): pollen in the air. Panel (b): spermatozoo in semen (ν ≈ 0.0094 Pas) with Re ≈ 10−2. Panel (c):
Michael Phelps in water (ν ≈ 10−3 Pas) with a Re ≈ 106.

Coupling with the external environment. The interplay between the fluid and the particles depend on the
physical properties of both the particles and the fluids. Among distinctive properties, one can think of:

• Inertia: When inertia is taken into account, massive (or heavy) particles do not in general follow the
streamlines of the carrier flow. For massive particles gravity may be non-negligeable (Saw et al., 2008;
Bewley et al., 2013) and lead to their gravitational settling.

• Buoyancy: Low-density particles are generally buoyant, and Archimede’s force opposing the gravity
to make the particle float. An example in turbulence is Mathai et al. (2015).

• Shape: The shape of the particle determines their coupling with the flow. Anisotropic particles have
different drag coefficients depending on the axis of symmetry (Voth and Soldati, 2017). This means
that depending on their orientation, the particles may experience more or less drag for the same flow
realization.

• Size: The size of a particle determines whether or not it affects the carrier flow through boundary
effects (Cisse et al., 2015). In turbulence, which is a multi-scale environment, a criterion is to define as
small particle any particle smaller than the Kolmogorov scale, which we will later precisely define. In
the ocean or in the atmosphere, the Kolmogorov scale is typically millimetric or centimetric. Hence,
small particles like microplastics are indeed small compared to the smallest scale of the flow, and it
becomes physically reasonable to model them as passive particles. Such is not the case for a plane or
for a whale.

• Charge: Charged particles are additionally subject to the Lorentz forces, and this may affect their
clustering patterns, with lesser charges leading to larger concentrations (Homann et al., 2009).

• Rheology: The rheology describes the material properties and the internal degrees of freedom of the
particle. A particle with several internal degrees of freedom may be qualified as flexible. The material
properties define if the object is plastic or elastic, and their potential breaking thresholds.

Fig. 1.7 shows the influence of various of these ingredients in the description of the human “sneeze
cloud”. The droplet particles present in a sneeze cloud have various of the features described above: They are
massive, buoyant, anisotropic and fragile. The correct physics describing the sneeze clouds needs to balance
those properties.
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Figure 1.7: Left panel: The effect of buoyancy on the sneeze cloud is apparent in its upward curvature. Right panel:
Saliva droplet cloud kinematics show the diameter of the droplets resulting from a human cough. The diameter sizes are
tabulated in the lateral color bar. Images taken from Bourouiba et al. (2014) and Dbouk and Drikakis (2020).

Coupling between one another. Modeling the interaction between particles may be required to describe
certain complex problems, such as the formation of rain in warm clouds (Lanotte et al., 2010; Saw et al.,
2015) through successive coalescences, or the collisions of dust particles with planetesimals in protoplanetary
disks (Homann et al., 2016). Active living particles may also interact, leading to potential flocking and this
may also be an ingredient beneath the jellyfishes blooms. The list is obviously long and way beyond the scope
of the present thesis. A final remark, we note that turbulent transport is determined not only by the type of
particles but also by the type of turbulence at play. Depending on the problem and the scales considered, one
may wish to consider geophysical flows, wall bounded flow (channel flow), fully developed homogeneous
isotropic 3D flows, etc.

Intent of the thesis In this thesis, we restrict our attention to studying the statistical behavior of small
particles, but with different degrees of complexity, as determined by the modeling of their shapes, their mass
and their rheology. We expose here a few of the most salient results relating to previous studies of this kind
of interplay, although not necessarily in a turbulent context. Each section describes the behavior of particles,
depending on the interplay between two or three parameters, chosen among their shape, their mass, and their
rheology.

1.3 Heavy anisotropic particles
Considering the interplay between mass and shape leads to the study of heavy anisotropic particles.

1.3.1 Heavy spherical particles
The effects of inertia in the Lagrangian statistics have been extensively studied for spherical particles (Toschi
and Bodenschatz, 2009; Bec et al., 2011; Calzavarini et al., 2008; Boffetta et al., 2004). In particular, the
presence of inertia leads to the preferential concentration of the particles, being distributed in a strongly
inhomogeneous manner (Sumbekova et al., 2017; Monchaux et al., 2012; Yoshimoto and Goto, 2007; Aliseda
et al., 2002; Balkovsky et al., 2001; Squires and Eaton, 1991). We present here studies related to those
behaviors, from an experimental and numerical point of view.

Experimental results. Different experimental settings have been used in order to reproduce homogeneous
isotropic turbulence (Monchaux et al., 2012); The most popular set-ups are wind-tunnels (Sumbekova et al.,
2017; Qureshi et al., 2007; Aliseda et al., 2002), as well as the Von Kármán settings (Volk et al., 2010; Salazar
et al., 2008; Xu and Bodenschatz, 2008). In addition, new facilities have been introduced such as synthetic
jets (Petersen et al., 2018; Goepfert et al., 2010) or the soccer ball (Good et al., 2014).
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The left panel of Fig. 1.8 highlights the result obtained by Monchaux et al. (2010) using a wind-tunnel.
The clustering of heavy particles is analyzed in terms of Voronoï tessellations. This method of tessellation
divides the domain in polygons with areas proportional to the local particle concentration field. The authors
recover the behavior of expulsion of inertial particles from strong vortex regions to calm zones of the flow,
where an optimal preferential concentration is around a Stokes number of the order of unity.

Fig. 1.8 also shows a more recent set-up used by Good et al. (2014) to reproduce homogeneous
isotropic turbulence. Their experimental setting consists in a ball with water droplets, carried by air turbulence
generated by 32 loudspeakers jets. Homogenous isotropic statistics are found in the bulk of the ball within a
volume ∼ 10cm3. They show that combined effects of inertia and gravity tend to reduce the velocity of the
particles.

Figure 1.8: Left panel: Voronoï diagram from a picture of the set-up of particles. Right panel: Experimental setting of
the soccer ball apparatus with 32 loudspeakers jets. Panels are taken from Monchaux et al. (2010) and Good et al. (2014).

DNS results. From a numerical point of view, a full description of the clustering of small massive particles
has been done by Bec et al. (2007). The study reports on numerical simulations at different resolutions of
the flow involving millions of particles, with several Stokes numbers St = τp/τη. This quantity measures
the relation between the particle response time τp and the Kolmogorov timescale τη, which is the smallest
timescale of the flow. The observation is that within regions of the size of the order of the dissipation scale η,
the preferential sampling of particles does not depend on the Reynolds number and achieves its maximum of
concentration for particle response times of the order of the Kolmogorov timescale (St ≈ 0.7).

The inset of the right panel of Fig. 1.9 shows this behavior, measuring the correlation dimension D2.
This quantity estimates, at small scales, the probability to find two particles within a distance smaller than r
as p(r) = rD2 . When particles are uniformly distributed, D2 is equal to the space dimension, e.g. D2 = 3. The
maximum of concentration corresponds to minimal values for D2 and is found at St ≈ 0.7. As observed in
Subpanel (d) of Fig. 1.9, the particle distribution is not longer scale-invariant in the inertial range.

The preferential sampling of heavy particles reflects on the acceleration statistics. In Bec et al. (2005),
the authors show that mass effects lead to a sharp decrease in the root-mean-square acceleration (see the right
panel of Fig. 1.9), essentially explained by two mechanisms. For small but not vanishing Stokes number,
particles concentrate in regions of low vorticity, characterized by strong shear. This results in a drastic
decrease of the acceleration. For large Stokes numbers, this effect becomes subdominant and statistics reflect
the long-time correlation of the acceleration (memory effects).
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Figure 1.9: Left panel: Slices of the modulus of the fluid pressure, where black colors represent low values and white
represents high values (panel (a)); together with the particle positions for Stokes number 0.16, 0.8 and 3.3 (respectively in
(b), (c) and (d)). Right panel: Normalized root-mean square acceleration arms/(ε3ν)1/4 as a function of Stokes number for
various values of Reynold number: squares represent a Reλ = 185, circles represents Reλ = 105 and triangles represents
Reλ = 65. Inset: Correlation dimension D2 as a function of the Stokes number for the highest Reynolds number. The
correlation dimension is fitted with a exponential law p(r) = rD2 where p(r) is the probability to find two particles at
distance smaller than r (r � η). Images taken from Bec et al. (2007) and Bec et al. (2005).

1.3.2 Anisotropic particles
Anisotropic particles are particles which lack or possess non-trivial symmetry properties. The dynamics
of anisotropic particles is prescribed by specifying their translational and their rotational parts. Compared
with tracers, these particles are expected to display more complex patterns of concentration. Historically,
anisotropic particles have been studied using ellipsoids (Jeffery, 1922; Bretherton, 1962; Brenner, 1964); the
simplest case is the case of axisymmetric ellipsoids also known as spheroids particles, for which two out of
the three axis lengths are equal. Two relevant cases have been well studied in the last years: spheroids in
homogeneous isotropic flows and spheroids in channel flows (Voth and Soldati, 2017; Ardekani et al., 2017).
A non-trivial feature of their dynamics is the fact that those particles occasionally tumble, e.g. rotate half-turn
about their greater axis. Fig. 1.10 shows the evolution of the tumbling rate of a rod particle, obtained from
experimental measurements in a nearly homogeneous turbulent field (Parsa et al., 2012). We can appreciate
that tumbling events are seldom; they are separated by calm periods where the particle keeps their orientation.
This can probably be interpreted as one of the signatures of turbulent intermittency.

The rotation rate of spheroids illustrates the preferential direction of these objects with the flow.
This quantity has been well studied in channel flows by Marchioli and Soldati (2013). They describe how
the presence of a wall affects the rotation statistics for inertial spheroids, and a similar study was done
by Challabotla et al. (2015) for disks. In Zhao et al. (2015), the authors decompose the rotation rate into the
spinning and the tumbling rate, in the zone of the channel flows where turbulent fluctuations are similar to
the homogeneous isotropic case. Fig. 1.11 shows these rates for different types of inertialess spheroids, with
either oblate, spherical and prolate shapes. In this region of the channel, the effect of intertia is to decrease
both rates. Conversely, the behavior of such particles closer to the wall displays stronger effects. More
recently, statistical models of the orientation for inertial particles have been developed by Gustavsson et al.
(2017).
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Figure 1.10: Evolution of a spheroid (with aspect ratio λ = 5 and a length of L = 1) evolving a turbulent flow (Rλ = 214).
The 3D image hase been obtained from multiple-camera high-speed video measurements. The color of the rod represents
the tumbling rate, with blue representing a low tumbling rate and red a high tumbling rate. The green lines show the
projection of the center of the rod onto the y-z and x-y planes. Image taken from Parsa et al. (2012).

Figure 1.11: Mean square rotation rate as a function of aspect ratio for tracer particles in homogeneous isotropic
turbulence. Image taken from Voth and Soldati (2017).
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Following a different viewpoint, the study of Siewert et al. (2014b) reports on the collisions between
ellipsoids particles. Fig. 1.12 illustrates two ellipsoidal particles with their positions and orientations before a
collision. The study shows that compared to spheres with the same volume, ellipsoid have a higher collision
rate, because the settling velocity depends on the particle orientation.

Figure 1.12: Position and orientation of two ellipsoidal disks before a collision projected onto the y-z plane. Image taken
from Siewert et al. (2014b).

1.4 Flexible elongated particles
Considering the interplay between shape and rheology leads to the study of flexible elongated particles.
Small particles suspended within a continuous medium generate a two-phase flow known as a “colloidal
suspension”. They appear in a wide variety of applications such as fog, clouds, hand cream, gelatine, smoke,
among others. Colloidal particles are solid particles whose sizes are between the Angstrom (1Å = 10−10m)
and the micron (1µ = 10−6m), whose shapes may vary (Happel and Brenner, 2012). In this context, such
particles are essentially subject to three forces: drag forces, Brownian forces and elasticity forces. The
balance between those three forces define two classes of complex particles, polymers and fibers.

On the one hand, when elastic forces are negligible compared to Brownian forces, the colloidal
particles are referred to as polymers. They are present in natural and biological environments under the
form of proteins (Szleifer, 1997), cellulose (Simon et al., 1998; Ng et al., 2015), DNA (Tang and Szoka,
1997; Mavila et al., 2018) as well as the basic component of mineral such as coal or diamond (Hayatsu
et al., 1981; Lee et al., 1993). Moreover, we can find them in synthetic materials such as concrete, glass
and plastics (Mignon et al., 2017; McKenna and Simon, 2017; Gewert et al., 2015). For infinitely flexible
polymers only the Brownian forces and the viscous drag compete, while the elastic forces are negligible.
In this asymptotics, we observe the transition between a colloidal state promoted by thermal noise, and the
polymer stretch induced by fluid shear (De Gennes, 1979). There exist many idealized models of polymers,
the most simple of which is probably the elastic dumbbell model introduced by De Gennes (1979); Watanabe
and Gotoh (2010); Musacchio and Vincenzi (2010). This model formed by two beads joined by a spring
(see the left side of Fig. 1.13) is often used to investigate the rheology of polymer suspensions (Li et al.,
2006; Pereira et al., 2017). More sophisticated models include for example three beads attached by two
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springs (Plan and Vincenzi, 2016; Ali et al., 2016) and is called the trumbbell model (see middle panel of
Fig. 1.13). More generally, chain models (see the right side of Fig. 1.13) have N beads joined by N − 1 rigid
inextensible bonds (see Henry et al. (2018)) that add an elastic effect in the polymers.

Figure 1.13: Illustration of various models of polymers. From left to right: dumbbell, trumbbell and chains models.

On the other hand, when Brownian forces are negligible and elasticity forces become important,
the colloidal particles are referred to as fibers. The fiber asymptotics is relevant to describe macroscopic
particles, such as cellulose fibers in papermaking industry (see Lundell et al. (2011)), or diatom phytoplankton
colonies (see Ardekani et al. (2017)) that significantly participate to the CO2 oceanic pump (see Smetacek
(1999)).

1.4.1 Fibers in viscous fluids
Fibers have been mostly studied in viscous fluids in the limit of very low Reynolds numbers. In this limit,
the fluid is characterized by the Stokes equations, a simplified form of the Navier-Stokes equations (later
described in Chapter 2). To analyze the fiber behavior in such regimes, it proves instructive to consider
some specific steady flows solving the Stokes equations. 2D shear flows, e.g. U(x, t) = (y, 0) and 2D linear
extensional flows, e.g. U(x, t) = (x,−y) are two paradigmatic examples (see Fig. 1.14). Such flows are easy
to simulate with numerics and can also be generated using various experimental setups from Taylor-Couette
apparatus and Channel flows (shear flows) to cross-sectional geometries (extensional flows) (see Du Roure
et al. (2019); Lindner and Shelley (2015) and references therein). In the latter case, careful experiments
manage to keep the object at the stagnation point.

Even in these apparently simple configurations, the deformation induced by the fluid to these flexible
elongated objects yields a nontrivial and rich phenomenology.

Figure 1.14: Illustration of the spatial configuration of a shear flow, (left side) and extensional flow (right side) in the x-y
coordinates. Streamlines of the periodic background flow are shown in blue.

One of the crucial ingredients is the notion of fiber instability, in particular the buckling instability.
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This phenomenon has been studied in many papers, both experimentally (Schroeder et al., 2003; Kantsler and
Goldstein, 2012) and numerically (Young and Shelley, 2007).

It is typically observed that fibers buckle when they are compressed along their main axis. This
phenomenon is illustrated in Panels (a) and (b) of Fig. 1.15, which display the dynamics of a fiber during
a buckling event for three different values of the parameter η. This control parameter measures the ratio
between the fluid compression and the elastic force: the larger, the stronger the compression by the flow.
It is readily seen from those experiments that increasing the parameter η produces wavy buckling patterns
involving shorter and shorter wavelengths. This hints that in the limit η→ 0 the fiber behaves like a straight
rod; inversely, when η→ ∞ the fiber is like a flexible thread.

Figure 1.15: (a) Fiber simulation in an extensional flow during a buckling event. Three simulations are shown using
different values of the critical control parameter η. Image taken from Manikantan and Saintillan (2015). (b) Experimental
images of actin filaments in a microfluidic device. Fibers are in the stagnation point of the extensional flow. Image taken
from Kantsler and Goldstein (2012). (c) Fiber configurations for the first three excited modes, corresponding to the
critical values of the control parameter η. Top panel: experimental results. Bottom panel: results from the linear stability
analysis. Image taken from Quennouz et al. (2015). (d) Dynamics of a fiber during a buckling event at η = 7000 from
simulations using the local slender body theory (SBT). Image taken from Becker and Shelley (2001).

To get more quantitative insights, one needs to rely on specific mathematical models; in that context a
popular tool is the so called “slender body theory” which we will later describe at length in Chapter 4. In
this theory, the limit η→ 0 when the fiber behaves as a rod is described in terms of a solution obeying the
so-called Jeffery’s equations. To address buckling, one can then analyze the linear stability of this solution
with respect to small perpendicular perturbations. Schematically, two cases can occur, depending on the local
configuration of the background flow.

• When the background flow is extensional, the fiber is found to be aligned with the direction of
compression. This configuration is always unstable for the fiber orientation, as we can appreciate in
Panel (a) of Fig. 1.15 where the fiber is rotating. In that case, a linear stability analysis as the one
performed by Quennouz et al. (2015) provides critical values for the control parameter η, describing
when the fiber buckles. Specifically, when η < η1 ≈ 153.2, the fiber is stable along the compressing
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direction. When η1 < η < η2 ≈ 774.3 the fiber is unstable and the first mode is the most unstable.
When η2 < η < η3 ≈ 1930 the second mode becomes the most unstable, etc. This dependence of the
buckling pattern with the parameter η is compatible with the behavior displayed in the panel (c) of
Fig. 1.15.

• When the background flow is a pure shear, the fiber is not steady but rather rotates at a constant rate.
This configuration can also be destabilized. Physically, throughout the rotation the fiber alternatively
experiences stretching and compression along its main axis, and this provides the buckling mechanism.
Mathematically, a linear stability analysis determines which mode becomes unstable depending on the
control parameter η (Becker and Shelley, 2001). As in the extensional case, buckling first happens at
η > η1 ≈ 153.2, with mode one becoming unstable. Higher critical values differ from the extensional
case. This kind of instability is indeed the one seen in panel (d) of Fig. 1.15.

1.4.2 Fibers in turbulence
3D turbulence. Studying fibers in very viscous flows is not merely an educational subject, it also has
practical relevance in the field of bio-physics. Most natural and industrial flows are however prone to exhibit
turbulent behaviors. We expect that the dynamics of fibers will then display highly non-trivial features, but
there are only very few studies that address non-spherical flexible particles in turbulent environments. The
recent years however witnessed the improvement of numerical and experimental techniques, enabling the
development of new perspectives in this field.

Figure 1.16: (a) Illustration of the experimental setup of the von Kármán flow. (b) Image of the working visual area,
limited by the withe square zone. (c) Illustration of the fiber reconstruction: data from the 3D reconstruction is represented
by the gray points, while the red curve is the cubic spline fit. Panels (a) and (b) taken from Brouzet et al. (2014). Panel (c)
stolen from Verhille and Bartoli (2016)

From an experimental side, we have in mind the recent results obtained by Brouzet et al. (2014), who
employed techniques of image reconstruction to analyze the fate of fibers carried by a turbulent von Kármán
flow. The experimental setup of the von Kármán flow is shown in the panel (a) of Fig. 1.16. Turbulence is
created by the centrifugal forces generated by the two opposite disks. This configuration allows to reach a
Reynolds number of the order of 105 − 106 with a dissipation scale between 12 − 19 µm. The measures have
been performed in the center of the flow, as delimited by the white zone in the panel (b) of Fig. 1.16, where
the turbulence is approximately close to being homogeneous isotropic. Macroscopic fibers, with length in the
inertial range, have been individually immersed in this turbulent flow. The study establishes a close relation
between the configuration of fibers in a turbulent environment and polymers suspended in a fluid flow. The
authors focus on a very natural observable, namely the end-to-end vector, defined as the distance between the
two extremes of the fiber; measured by its projection in the plane x − y. The authors show that depending on
their size, the fibers may follow two different regimes. For fibers smaller than a critical elastic length `e, the
fibers remain stretched out throughout the experiment and regardless of the flow fluctuations. Conversely, for
fibers larger than `e, the flexibility of the fibers is not negligible and the fibers may bend. This critical value
depends on the stiffness of the fiber and on the turbulent level of the flow. Indeed, in the later work presented
by Verhille and Bartoli (2016), using now a three dimensional reconstruction image of the fiber (see panel
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(c) of Fig. 1.16), it is shown that the fiber deformation depends also on its own length L: the larger the fiber,
the more flexible. This is in constrast with the behavior of polymers, whose deformations are dictated by
Brownian noise.

From a numerical point of view, given the huge number of degrees of freedom involved in the
integration of the NS equations (see Chapter 2 for discussion), simulating turbulent flows is a cumbersome
task. Naturally, coupling turbulent flows with complex deformable objects that also carry a large number
of degrees of freedom, makes the problem even more complicated. Some studies (Rosti et al., 2018, 2020;
Svenning et al., 2012) use immersed boundary conditions (IBM) to resolve the full coupled dynamics,
induced by the fibers-fluid interaction. For instance, the study presented by Rosti et al. (2018) focuses at better
understanding the role of turbulent fluctuations. The authors use fibers, with length of the order of the inertial
turbulent range, as experimental probes that measure the two-point statistical observables of turbulence. In
particular, they recover the scaling exponents of the longitudinal structure functions described in the next
chapter. In the left side of Fig. 1.17 we show their three dimensional fully developed turbulent flow, coupled
with a single fiber. While accurate, this direct method entails a huge numerical cost. A more accessible line
of attack is to rely on simplified modeling of the coupling, using passive models of complex particles, such as
elastic dumbbells (Ahmad and Vincenzi, 2016; Davoudi and Schumacher, 2006), trumbbells (Plan, 2017; Ali
et al., 2015) and elastic chains (Singh et al., 2020; Picardo et al., 2020).

Boundary effects have been studied by Dotto and Marchioli (2019); Dotto et al. (2020) with inertial
flexible fibers carried in a turbulent channel flow (see the right side of Fig. 1.17). Similar to what is observed
for spherical or elongated rigid particles within turbulent channel flows; fibers are also found to have a
preferential sampling in the very-near-wall region. The authors deal with fibers longer than the Kolmogorov
dissipative length scale. This preferential sampling seems to be conducted by turbo-phoresis, in other words
fibers have the tendency to move towards less turbulent regions. It is also observed that the fibers bend more
systematically near the center, where turbulence is approximately homogeneous and isotropic. Conversely,
near the wall, fibers are most of the time stretched by the mean shear.

Figure 1.17: Left panel: Illustration of a single fiber immersed in a homogeneous isotropic turbulent flow. The
instantaneous vorticity field is represented by the orange surfaces, while the three back planes show the contours of the
enstrophy field. Right panel: Snapshots of fibers in the near-wall region of the channel flow. The colormap shows the
streamwise fluid velocity fluctuations. Panels taken from Rosti et al. (2018) and Dotto and Marchioli (2019)

2D turbulence. Another line of research relates to fibers within two-dimensional fluids, a line of work
which carries applications in geophysics, for example to describe the patchiness of plankton or the dynamics
of plastic debris on oceanic scales (Powell and Okubo, 1994; Abraham, 1998; Van Sebille et al., 2015).
From a fundamental viewpoint, 2D turbulence is obviously very different from 3D turbulence, but provides a
flexible environment to analyze multi-scale dynamics. Picardo et al. (2018) have studied the dynamics in
the so-called direct enstrophy cascade regime. The authors show a preferential sampling behavior of elastic
particles within the large-scale vortices, which depends on the level of flexibility of the fibers.

Fibers are represented with the elastic-chain model, and have a length of the order of the large-scale
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injection scale. The authors use the dimensionless Weissenberg number Wi = τchain/τ f luid to measure the
chain elasticity, where τchain is the relaxation time of the chain, which depends on the number of degrees of
freedom of the chain. As observed in Fig. 1.18, increasing the level of elasticity increases the preferential
sampling. Panels (a) and (b) display the center of mass of the fiber, for two different values of Wi. Fibers act
like fluid tracers, when Wi is small. Conversely, the preferential sampling in the vortex zones is observed
when the flexibility increases. In addition, panel (c) displays the full fibers with their stretching-compression
dynamics.

The authors also investigate the influence of the turbulent structures on the fiber dynamics. In regions
where the flow stretching is strong, the elastic chains remain stretched, and their lengths increase. Due to
the increase in size, fibers then start to follow their own dynamics until they reach a vortex. The stretching
becomes then negligible, and the chain folds. Fibers remain in the vortex structure until the latter disappears
because of dissipation or friction.

Figure 1.18: Snapshots of elastic chains in a two-dimensional turbulent flow. The background color shows the underlying
vorticity (` f = 2 and τ f = 2.3). Panel (a) shows the center of mass for chains with Wi = 0.004. Panel (b) shows the center
of mass for chains with Wi = 0.9. Panel (c) shows the entire chains for Wi = 0.9. Parameter values: ν = 10−6, µ = 10−2

and f0 = 0.2. Panels stolen from Picardo et al. (2018)

1.5 Heavy flexible elongated particles
Combining the effects of mass, shape and rheology lead to the study of heavy flexible elongated parti-
cles.

Flexural failure: a venture into pasta science. Flexural failure is an efficient way to break elongated
particles. This problem is notorious in rheology as it relates to the fragmentation of dry spaghetti pasta. The
rheology of dry spaghettis is not only a practical problem arising in kitchens around the world, but it is also
an interesting scientific problem in itself. The reason why spaghetti pasta do not simply and systematically
break into two pieces when they are bended is a question that even caught the attention of at least two Nobel-
Prized physicists, Richard Feynman and Pierre-Gilles de Gennes (see Sykes (1994)). The resolution of this
puzzling problem was found by Audoly and Neukirch (2005) who received an Ig Nobel Award price in 2006
(see APS-physics (2006)) for this achievement. The results of Audoly and Neukirch (2005) describe the
fragmentation of dry spaghetti pasta in terms of a cascade of fractures. A first break-up of the rod pasta occurs
at the position where the curvature is maximal, as is observed in Fig. 1.19. This event triggers a flexural wave
which propagates into the two daughter pieces. In one of the pieces, this wave locally increases the curvature
and generates a new fragment, possibly leading to successive secondary breakups and to the formation of
many small-size fragments. The 2014 youtube channel “Smarter Every Day” (see SmarterEveryDay (2014))
shows this effect clearly using an ultra-fast camera with 250,000 frames per second, and shows how fractures
can even cascade throughout the spaghetti. Fig. 1.19 shows how the flexural wave is moving down, here
increasing the curvature of the rod pasta on the left piece, which leads to the production of a small fragment
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rotating clockwise.

Figure 1.19: Top left panel: Bending of a dry spaghetti pasta leading to an increase of curvature. Image taken from Audoly
and Neukirch (2005). Top right panel: buckling and fragmentation of dry pasta (d = 1.9 mm, L = 24 cm) under the action
of an aluminium projectile (U0 = 3.5 ms−1). The images have been taken with time intervals of 236 µs. Image taken
from Gladden et al. (2005). Bottom panel: Screenshot of the breaking of a dry spaghetti pasta filmed in ultra-slow motion.
The image was obtained with a fast camera at 250000 fps. Image taken from SmarterEveryDay (2014).

The outcome of this rather complex mechanism is the observation that the number of pieces as
well as their sizes is very sensitive to the specifics of the compression. Even in lab controlled experiments,
compressing an elongated brittle material is not deterministic. For example, the right panel of Fig. 1.19
shows a rod bending and breaking under an axial compression and realized by Gladden et al. (2005). The
initial buckling is subordinated to a selected wavelength, which determines the first breaking point, at the
position where a critical curvature is reached. Conversely, it is still unclear what happens next.We observe in
Fig. 1.19 that the dry pasta is broken in several pieces. The exact number of dry pasta pieces at the end of the
fragmentation is not easily predictable, nor are their sizes. As discussed by Vandenberghe and Villermaux
(2013), the propagation of elastic flexural waves after the first breakup may conspire with the presence of
material defects acting as “weak points”, in order to produce fragmentation in apparently random positions
along the body.

1.6 Scope and layout of the thesis
In this thesis, we use massive numerical simulations to perform a systematic statistical analysis of the
dynamics of small complex particles in a turbulent environment. As explained previously, we restrict our
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attention to small particles with complexities prescribed by non-trivial interplay between the effects of mass,
shape and rheology. Following the studies previously presented, we identify several natural and non-trivial
questions which guide the course of this thesis:

• How do turbulent flows prescribe the dynamics of complex particles?

• How do turbulent flows prescribe the concentration patterns of complex particles?

• How to model fragmentation processes caused by turbulence?

Naturally, specific answers to those questions will depend on the types of particles that we investigate.
As such, the thesis is organized as follows.

In Chapter 2, we introduce the incompressible Navier-Stokes equations, which we use to generate a
turbulent velocity field with numerics. We recall a few of the salient statistical features expected for turbulence
at infinite Reynolds number, and compare those to the properties observed in our numerics.

Chapter 3 is devoted to the interplay between mass and shape. We consider small massive spheroids
within a homogeneous isotropic turbulent flow. We provide a full description of their translational and
rotational dynamics. We also characterize their preferential sampling properties.

In Chapter 4, we report on a systematic analysis of small elongated flexible fibers passively transported
by the homogeneous isotropic turbulent flow, hereby focusing on the interplay between shape and rheology.
We describe in details the hypothesis behind the slender body theory, on which our numerics rely. We then
provide statistical analysis of the different types of instabilities experienced by the fibers.

Building on this analysis, Chapter 5 describes an implementation of the material consequences of
turbulent extreme events: if brittle, fibers can break. We describe two types of failures, which we implement
in our numerics. We also sketch a stochastic model which relates the fragmentation statistics to the waiting
times between dangerous turbulent events.

Finally, in Chapter 6, we summarize our results and give some perspectives for future studies related
to modeling complex particles in fluids.
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This chapter introduces basic concepts and definitions related to fluid mechanics and the Navier-Stokes
equations. It highlights the key statistical signatures of turbulent flows which are referred to throughout this
manuscript, and discusses their relevance in the context of direct numerical simulations at large but finite
Reynolds number.

2.1 Navier-Stokes equations
In concept, a fluid with viscosity ν can be thought of either as an ensemble of fluid particles or as a continuous
medium evolving with time throughout a prescribed region D of the space. This dichotomy provides two
different ways to describe the motion of a fluid, e.g. either from the Eulerian or from the Lagrangian
perspective. Specifically, the Eulerian viewpoint describes the fluid in terms of the local velocity field u(x, t),
computed as the average among the fluid particles contained in the vicinity of a prescribed position x at time t
(see the book by Huang (2009)). Conversely, the Lagrangian viewpoint describes the fluid in terms of the
dynamics of distinguishable fluid particles. The flow is then prescribed in terms of the dynamical history of
each fluid parcel. In other words, rather than sitting on a beach staring at the water as its Eulerian counterpart,
the Lagrangian observer sits in a boat and drifts down the river.

In the Eulerian viewpoint, the fluid motion is fully prescribed by the dynamics of the velocity field
u(x, t) (with x ∈ D), and the latter evolves according to the incompressible Navier-Stokes equations:

∂tu + (u · ∇) u = −
1
ρ
∇p + ν∇2u + f and ∇ · u = 0, (2.1)
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where p is the pressure field solving the Poisson equation ∇2 p = −Tr(∇u2); f is the forcing term,
representing the external source of energy. We hereafter assume that the forcing is large-scale, which means
that it is correlated over a prescribed distance L f . This defines the injection scale. ρ is the fluid density. Due
to the incompressibility condition, ρ is a constant, that we hereafter set to unity. In this manuscript, the
Navier-Stokes equations are solved within a triply periodic cube with edge 2π.

The Navier-Stokes equations involve the interplay between the non-linear advection term (u · ∇) u
and the linear diffusion term ν∇2u. The prevalence of one term over the other can be quantified by estimating
the ratio between them. More precisely, let us introduce the non-dimensional variables u′ := u/U` , x′ := x/`
and t′ := t/(U``), where U` represents the typical velocity amplitude at scale `. In terms of those, the
Navier-Stokes equations become:

∂t′u′ + (u′ · ∇′) u′ = −∇′p′ + ν` ∇
′2u′ + f′ and ∇ · u′ = 0, (2.2)

where the ∇′ operator here denotes gradient with respect to the primed variables. The new forcing
is f′ = f`/U2

` . The inverse of the rescaled viscosity ν` := ν/(U``) defines a dimensionless number, Re` =

1/ν` = U``/ν. The primed pressure field is still defined implicitly through the Poisson equation.

Choosing ` as the macroscopic integral scale L which will be defined precisely in the next paragraph
and which for the time being can be identified to the injection scale, and choosing UL a large-scale velocity,
e.g. prescribed by the so-called root-mean-squared (rms) velocity UL = U := 1/

√
3 (|D|−1

∫
D
||u||2)1/2, this

dimensionless number becomes the celebrated (macroscopic) Reynolds number Re = UL/ν. In the present
manuscript, the turbulent state of a fluid characterizes the stationary solution generated by the Navier-Stokes
equations at “sufficiently high-values” for the Reynolds number. As such, and by a somewhat roundabout
definition, the Reynolds number quantifies how turbulent the flow is: the larger, the more turbulent.

For Re � 1, the dynamics is multi-scale. The scales η � ` � L define the so-called inertial range.
The scale ` = η for which Reη = ν−1

η = 1 formally defines the onset for the dissipative scales. On scales
` < η, the dissipative term dominates over the advection term and the velocity diffuses. The dissipative scale
η is also known as the Kolmogorov dissipation scale. As for the integral scale, it requires further physical
hypothesis to be fully specified. A brief overview of the standard description of turbulent flow is therefore
provided in the next section. Let us here just mention that typical values for the Reynolds numbers range
from 1012 in atmospheric tropical cyclones (Fig. 2.1a) down to 102 for blood flowing through the human
brain (Fig. 2.1b) and 10−4 for E. coli bacteria swimming at ≈ 10µms−1 (Fig. 2.1c) (Lauga and Powers, 2009;
Vogel, 2020).

(a) (b) (c)

Figure 2.1: Natural exemples of turbulent flows with different Reynolds numbers. Panel (a) shows the tropical cyclone
Jasmine (© NASA image courtesy Jeff Schmaltz 2012 (NASA, 2012) ); Panel (b) illustrates the blood flow within a typical
human brain. The image is obtained from composite coloured magnetic resonance imaging (MRI) and single-photon
emission computed tomography (SPECT) (Zephyr, 2020); Panel (c) shows a low-temperature electron micrograph of a
cluster of E. coli bacteria (© Eric Erbe, digital colorization by Christopher Pooley, both of USDA, ARS, EMU.)
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2.2 The statistical description of turbulence
The well-posedness of the Navier-Stokes equations is a formidable challenge for the mathematicians and a
rigorous description of the turbulent state from first principles is to this day elusive (Caffarelli, 2000). Since the
seminal work of Reynolds in the 19th century, physicists and engineers have however been steadily working
to develop a heuristic description of turbulence based on various tools and concepts, such as stochastic
processes, data analysis, dimensional analysis, scaling laws, toy models, approximations, and so on. To this
day, the prevalent picture accounting for the statistical properties of turbulence originates from the pioneering
work of Richardson. In a nutshell, Richardson describes a turbulent flow as a hierarchical field intertwining
energetical structures with a multitude of different sizes, the so-called “turbulent eddies”. The large eddies
leak energy to the smaller ones, in a cascade process only ending when dissipative scales are reached. This
cascade picture of turbulence anticipates on Kolmogorov 1941 theory (K41), which provides a conceptual
framework describing turbulence in terms of statistically self-similar flow fields. A modern reformulation of
K41 theory can be found in (Frisch, 1995, Chap. 6,7). It provides an axiomatic description of turbulence
in the limit of infinite Reynolds number, the so-called “fully developed turbulence”, under the following
hypothesis:

H1 (Fully-developed) turbulent flows are homogenous, isotropic and stationary within the inertial range of
scales

In other words, all the possible symmetries are statistically restored at inertial scales. This means that a
turbulent flow is invariant under time-translation, space-translation and space-rotation. Inertial scales
refer to scales far away from the boundaries, smaller than the injection length scale and unaffected by
dissipation.

H2 They have self-similar statistics, fully prescribed by a unique scaling exponent h.

Roughly said, self-similar structures are structures that look alike at any level of zoom. Mathematically,
this concept formalizes Richardon’s vision of turbulent eddies being analogous to Russian doll. Defining
the velocity increments

δu(x, `) = u(x + `) − u(x), (2.3)

the second hypothesis implies the existence of a scaling exponent h ∈ R such that the velocity
increments behave as

δu(x, λ`) law
= λhδu(x, `) ∀λ ∈ R+ (2.4)

for all x ∈ D and all increments ` and λ` lying within the inertial range. The equality in law used in the
above equation identifies the probability distribution of the rhs and lhs considered as random objects.

H3 In the limit of vanishing viscosity, the mean rate of energy dissipation εν converges towards a finite
non-negative value.

Explicitly, εν = ν〈‖∇u‖2〉 → ε < ∞ in the limit ν → 0. Physically, this means that lowering the
viscosity produces sharper velocity gradients, and that turbulent flow fields are therefore very irregular
in the limit of vanishing viscosity.

Under those hypothesis, the statistics of turbulent velocity fields within the inertial range are then
fully prescribed by the scale ` and the value of ε. Dimensional analysis prescribes the value h = 1/3 for the
scaling exponent introduced in H2. This entails the scaling δu ∼ (ε`)1/3 within the intertial range. We can
now further specify the Kolmogorov dissipative scale, for which effects of viscosity become apparent, as

η =

(
ν3

ε

)1/4

, (2.5)
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and we also define the integral scale L from the rms velocity U as

L = U3/ε, where U =
1
√

3

〈
||u||2

〉1/2

D
, (2.6)

and 〈·〉D denotes spatial averaging over the domain.

In terms of timescales, we define the eddy turnover times τ` = ε−1/3`2/3 relevant for inertial range
statistics. This prescribes the Kolmogorov (dissipative) timescale τη and the integral timescale τL, which can
respectively be interpreted as the fastest and the slowest timescales within the inertial range. Note, that by
construction of the integral scale, the large-scale eddy turnover time satisfies τL = ε−1/3L2/3 = L/U. The
ratio between the integral and the dissipative timescales is used to define a new dimensionless number, also
called the Taylor-scale Reynolds number 1

Reλ :=
√

15
τL

τη
=
√

15Re1/2. (2.7)

Those definitions allow to further illustrate the connection between Reynolds number and multi-scale
statistics. Indeed, assuming that inertial range statistics pertain to the full range of scales η ≤ ` ≤ L, one can
use the estimates ε = U3/L = u3

η/η to obtain

(
L
η

)4

= Re3, e.g.
L
η

= Re3/4 ∼ Re3/2
λ : (2.8)

the higher the Reynolds, the larger the ratio between the integral and the dissipative scales, both in
terms of length-scales and in terms of time-scales. Naturally those estimates rely on dimensional analysis and
do not define sharp delimiters. We will explicitly illustrate this feature using our numerics.

2.3 Turbulence in spectral space

2.3.1 From experiments and numerical simulations
Experimental and observational studies of turbulence remain the most convenient way to reach huge Reynolds
numbers relevant for the study of fully developed turbulence. Measurement techniques have been improved
for years and allow for some fine characterization of multi-scale statistics in turbulent fluid flows, along
with finite-Reynolds effects (Champagne, 1978; Klewicki et al., 1998; Castaing et al., 1990; Arneodo et al.,
1996; Baudet et al., 2015; Kharche et al., 2019; Saw et al., 2016). Over the past 40 years, the growth of
computer power and numerical ressources have however allowed simulations of turbulent flows to have an
increasing impact. To understand fluid dynamics at high Reynold number, the advantages of using numerics
are many, among them well-defined initial conditions, better conditioning of statistics, closer contact to the
mathematical theory of the Navier-Stokes equations and chief of all detailed access to the full flow field (in
terms of velocity, acceleration, pressure, dissipation, both in Eulerian and Lagrangian perspective). This
flexibility is particularly appreciable when dealing with transport problems, as is the case in the present
manuscript. Systematic analysis of the dynamics of potentially complex Lagrangian particles is then easily
accessible, without having to worry about water shortage.

Yet, generating turbulence with numerical solvers is both an easy and a hard task, depending on the
chosen parameters. On the one hand, it suffices to integrate the Navier-Stokes equations for sufficiently long
time, and this is the spirit behind direct numerical simulations (DNS) of the Navier-Stokes (NS) equations.
On the other hand, those equations are cumbersome to integrate over many scales, that is for large values of
the Reynolds number and for long times. The reason for this difficulty is readily apparent from Eq. (2.8),
which implies that a turbulent field has many degrees of freedom. Specifically, the number of required

1The numerical pre-factor
√

15 is conventional but not arbitrary. It stems from the usual definition of the Taylor-scale Reynolds
number as Reλ = Uλ/ν using the Taylor scale λ = U/〈(∂iui)2〉D with i = x, y or z. The two definitions coincide for isotropic turbulence
(Frisch, 1995).
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collocation points is N3 ∼ (L/η)3 ∼ Re9/4 ∼ Re9/2
λ , and this fundamentally prevents numerical methods to

reach gigantic Reynolds numbers.

The largest Reynolds number achieved through a direct numerical simulation of the Navier-Stokes
equations is to this day Reλ ≈ 1300 (Iyer et al., 2017) using 163843 collocation points. This corresponds to a
macro-scale Reynolds number of the order Re ≈ 105, that of a small washing-machine. For such values, the
turbulence is expected to be fully developed, as observed in controlled studies of hydrodynamic turbulence
using the Von-Kármán experiment (Dubrulle, 2019). While current controlled experimental realizations
of such flows track the fluid over thousands of integral times, numerics however only manage to produce
turbulent dynamics at such Reynolds number over a few integral times.

For our purpose, where we are interested in analyzing ensembles of solutions rather than a single
realization, we will deal with more modest resolutions, involving anything in between 5123and 40963 points.
Still, achieving long time integration of the NS equations remains a formidable task, and we rely on a
numerical solver implementing massive parallelization of the dynamics. At this point, let us point out that
besides computing time availability, storing full turbulent fields entails huge memory cost. To give a rough
idea, storing a field every few τη for a few integral time-scales requires a storage C ∝ Reλ N3 ∝ N11/3 ∝ Re11/2

λ .
This means that doubling resolution produces data approximately 13 times as voluminous.

2.3.2 Spectral space and LaTu solver
LaTu solver. The use of Fourier space in turbulence simulations is a powerful tool that produces highly
accurate schemes compared to other methods such as finite-difference, finite-volume or finite-element methods
(see the book by Ferziger et al. (2002)). Besides, it provides a well-controlled approximation of the NS
dynamics that relies on the concept of Galerkin projection (Orszag, 1973).

In the present thesis, we rely on the specific LaTu numerical solver, developed in the recent years by
H. Homann, in order to numerically solve the NS equations. The LaTu solver solves the NS equations in a
triply periodic cubic domain with edge 2π. It relies on a massive parallelisation through a pseudo-spectral
scheme using fast-Fourier transforms to bridge physical space to Fourier space. We recall that pseudo-spectral
codes efficiently combine calculation methods in spectral and physical space to produce fast schemes while
retaining the power of Fourier projections. On the one hand, the spatial derivatives are easily calculated in
spectral space by pointwise multiplication of the Fourier transformed fields with the wavevectors k. On the
other hand, the quadratic non-linearity involving cumbersome convolution in spectral space is computed
using point-wise multiplication in physical space. As such, the cost of a single time step requires O(N3 log N)
operations. This is way more efficient than the O(N6) operations that would be required if the code was purely
spectral (Anderson and Wendt, 1995).

We typically use a forcing scheme which prescribes the kinetic energy in the first two Fourier shells, as
described by Homann et al. (2007). We here describe the turbulence obtained using three different resolutions,
namely 5123, 10243 and 40963, which respectively achieve a Reλ of 199, 325 and 731. Because of the finite
resolution, there is a maximal wavenumber kmax which characterizes the smallest structures that the simulation
can produce. In many simulations, kmax = [N/3] and this corresponds to the so-called 2/3 de-aliasing rule
which guarantees conservation of energy in the limit f = 0, ν = 0 (Orszag, 1971). In our simulations, we
rely on another de-aliasing scheme known as Hou smoothing that was introduced by Hou and Li (2007), for
which kmax = [N/2]. While Hou smoothing does not conserve energy in the inviscid limit, it is considered a
safe method by computational fluid dynamicists, which allows to solve for a slightly extended inertial range
compared to the standard 2/3-rule. Those are the simulations which we rely on the course of this manuscript,
and we summarize the main parameters of our simulations in Table 2.1. Finally, note that the integral scale L
yield to the wavenumber KL = 2π/L ∼ 4, which coincides with the forcing scale.

A rule of thumb to estimate the accuracy of a Fourier solver is the quantity kmaxη that should be of
order unity or larger. In our simulations, kmax = 2N/5 (instead of N/3 if we had not used Hou smoothing but
rather the 2/3-rule), and the value of η are summarized in Table 2.1. For the 5123 and 10243 runs, we get
kmaxη ' 0.86, and for the 40963 run, we get kmaxη ' 1.2. Those numbers mean that the 40963 run is slightly
better resolved than the other two.
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N3 ν ∆t ε η τη urms L τL Rλ

5123 5 10−4 10−3 0.4083 0.0042 0.035 0.8564 1.54 1.80 199

10243 2 10−4 5 10−4 0.431 0.0021 0.022 0.87 1.52 1.753 315

40963 10−5 6 10−4 3.8 10−3 7.16 10−4 0.051 0.19 1.86 9.68 731

Table 2.1: Numerical and physical parameters of the direct numerical simulation: N3 number of collocation points,
ν kinematic viscosity, ∆t time step, ε average kinetic energy dissipation rate, η = ν3/4/ε1/4 Kolmogorov dissipative
scale, τη = ν1/2/ε1/2 Kolmogorov time, urms root-mean square velocity, L = u3

rms/ε large-eddy length scale, τL = L/urms

large-eddy turnover time, Rλ =
√

15 u2
rms/(ν

1/2ε1/2) Taylor-based Reynolds number.

Energy budget. In the light of the K41 theory, let us now characterize some of its essential features. To do
so, we first rely on the spectral space representation of the velocity field. Specifically, writing

u(x, t) =
∑

k

û(k, t) eik·x , where û(k, t) :=
1

(2π)3

∫
D

dx u(x, t) e−ik·x, (2.9)

one defines the isotropic energy spectrum E(k, t) as:

E(k, t) :=
1
2

∑
k

|û(k, t)|2 with k −
1
2
< |k| ≤ k +

1
2
. (2.10)

The latter quantity allows to compute the total kinetic energy as E :=
∑kmax

k=1 E(k, t) and provides the
estimate Ω :=

∑kmax
k=1 k2 E(k, t) for the enstrophy. In addition, the non-linear energy flux is defined as

Π(k, t) =
∑
|k|≥k

T (k, t), where T (k, t) := <

 ∑
i, j=1,2,3

û?i (k, t)Pi, j(k) ̂[u × (∇ × u)] j(k, t)

 (2.11)

is the energy transfer function. Those quantities appears in the scale-by-scale energy budget:

∂tE(k, t) + Π(k, t) = F (k, t) +D(k, t), (2.12)

where Ek, Πk,Dk and Fk respectively represent the energy contained in wavenumbers ≤ k, the energy
flux (2.11) from modes ≤ k to modes ≥ k, the energy dissipation and the energy injection rate. Explicit
formula for those quantities are :

E(k, t) =
1
2

∑
|k|≤k

|û(k, t)|2, D(k, t) = −ν
∑
|k|≤k

|k|2 |û(k, t)|2 and F (k, t) =
∑
|k|≤k

f̂k · û(−k, t). (2.13)

K41 theory relates to the statistically steady state of turbulence, formally described by averaging both
sides of Eq. (2.12). The scale-by-scale energy budget then becomes

Π(k) = F (k) +D(k), (2.14)

with the short-hand notation Π(k) = 〈Π(k, t)〉, F (k) = 〈F (k, t)〉, etc.

The Wiener-Khinchin theorem ties the scaling of the energy spectrum to the Fourier transform of the
two-point correlation. As such, the K41 theory entails scaling of the velocity increments as E(k) = CKε

2/3k−5/3

with CK a pre-factor known as the Kolmogorov constant. Inertial range statistics then feature constancy of
the stationary energy flux for η � ` � L.
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Numerics. In Fig. 2.2, we indeed observe the Kolmogorov −5/3 spectrum for two different resolutions of
the flow: In the left panel, the simulation employs 5123 collocation points and in the right panel 10243 points.
In both pictures, the scaling range extends over more than a decade. It is delimited by kL = 4 on the infra-red
side, determined by forcing scale. The difference in Reynolds numbers materializes in the 10243 simulation
having larger extent on the ultra-violet side in contrast to the 5123 run, because the small scales are better
resolved, hence allowing smaller value for the viscosity.

As anticipated, we observe that the Kolmogorov scale kη = 2π/η is not a sharp delimiter of the
dissipative range. Formula (2.5) estimates kη ≈ 1500 for the 512 run and kη ≈ 3000 for the 1024 run
(see Fig. 2.2)... this is much larger than kmax! 2 In both cases, the spectrum within the inertial range is well
fitted by the formula E(k) = CK ε

2/3 k−5/3 (red dash-line), where the constant CK ≈ 1.5 is in good agreement
with the values usually reported in experimental studies Pope (2001); Sreenivasan (1995).
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Figure 2.2: Turbulent spectrum of energy for two different resolutions of the flow. On the left side the simulation employs
5123 collocation points and in the right side 10243 points. Gray lines show the energy spectrum at different times and the
red dash-line shows the Kolmogorov spectrum E(k) = CK ε

2/3k−5/3 with CK ≈ 1.5. The two vertical dash-lines display
the forcing scale kL and the Kolmogorov scale kη.

Fig. 2.3 shows the normalized energy flux as a function of the wavenumber for both simulations. The
energy flux is clearly not constant over the full inertial range kη � k � kL, and exhibits strong fluctuations
in time, as shown by the spread of the light grey lines, showing different simulation times. The average
of those is shown in red. Upon normalization by the mean dissipation rate, the flux is approximately a
constant on the scales 2 < k . 20 for the 5123 simulation and 2 < k . 50 for the 10243 simulation. Note
that the plateau behavior only holds for wavenumber k much lower than the dissipative wavenumber kη (see
Fig 2.2). The observation that the energy flux essentially behaves as a constant over a wide range of scales
illustrates the concept of cascade, e.g. the observation that within this range, identified as the inertial range,
the scale-to-scale energy transfer matches the energy dissipation rate. In other words, we expect that in the
limit of vanishing viscosity

Π(k) = const = ε for all k � kL. (2.15)
2This value of kη corresponds to a physical dissipative scale η ≈ ∆x/3. This rather small value is allowed thanks to our use of Hou

smoothing. If we had relied on the usual 2/3 de-aliasing rule, we would have tuned the parameters so that η ≈ ∆x/2.
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Figure 2.3: Energy flux normalized by the mean dissipation rate ε for two different resolutions of the flow. The left panel
displays a resolution of 5123 collocation points and the right panel a resolution of 10243 collocation points. The gray
lines show the instantaneous energy flux at different times, and the red dash-line the time-average.

2.4 Turbulence in physical space

2.4.1 K41 theory
The use of a pseudo-spectral method to solve the NS equations seemingly ties the analysis to spectral space.
However, the latter only provides limited advantage compared to physical space. While the second order
moment of the increments is directly linked to the energy spectrum, it is cumbersome to access higher order
moments of the velocity field in spectral space. For that matter, it remains insightful to study high-order
statistics in physical space, in spite of the periodic boundary conditions.

Fig. 2.4 and Fig. 2.5 respectively display three snapshots of the kinetic energy density e(x, t) =

1/2|u|2(x, t); projected in the plane x − y of the fluid. In order to appreciate the variety of scales participating
in the field, various levels of zoom have been chosen: 2π, π and π/4. Those respectively correspond to the
integral scale, the inertial range and the onset of small scales. We observe that the fluid displays complex
patterns throughout those scales, possibly representative of a self-similar behavior. In addition, the right
panels of Fig. 2.4 and Fig. 2.5 allow to appreciate the resolution limits inherent to the use of numerical
simulations, zooming into the structures of the order of the dissipation scale. On those scales, the energy field
is smooth and does not ressemble the large-scale pattern shown in the left panel: the self-similarity is clearly
lost. It will be readily seen that this multi-scale physics does not fit within the framework of K41 theory,
and that a better description is provided by the so-called K62 theory, which takes into account the spatial
fluctuations of the dissipation.
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Figure 2.4: Snapshots of the energy density e(x, t) = 1/2|u|2(x, t) for different levels of zoom in the x − y plane, using
the 3D simulation with 5123 collocation points.

In order to compare the two different resolutions, we show in Fig. 2.4 and Fig. 2.5 the energy field
using the same zoom level ` when expressed in terms of the large-scale L. Note that because one resolution
is twice the other the dissipative scales are η1024 = η512/2. We indeed observe that 10243 run has a better
resolution and better resolves smaller structures. At fixed level of zoom, the energy field is less blurry.
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Figure 2.5: Snapshots of the energy density e(x, t) = 1/2|u|2(x, t) for different levels of zoom in the x − y plane, using
the 3D simulation with 10243 collocation points.

K41 theory is formally meant to describe fluids at infinite Reynolds numbers. A natural question to
ask is whether the fluid flows generated by direct numerical simulations of the Navier-Stokes equations fit
into that framework, at least approximately. To address this issue, convenient objects to introduce are the
structure functions. Those objects prove very useful in highlighting the self-similar nature of the velocity
field and appear in the 4/5 law of turbulence, one of the few exact results known to physicists on the NS
equations.

Structure functions characterize the statistical distribution of the turbulent velocity field by measuring
its statistical moments. Specifically, structure functions measure the moments of the velocity difference
between two points x′ = x + `r and x, with r a prescribed unit vector. It is then customary to introduce the
parallel and the perpendicular structure functions, respectively defined as

S p,‖(`) = 〈((u(x + `r) − u(x)) · r)p〉 and S p,⊥ = 〈((u(x + `r) − u(x)) · r⊥)p〉 , (2.16)
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where 〈·〉 denotes an average over both space and angular sectors, and r⊥ is a unit vector perpendicular
to r 3. The first moment is the expected value, the second moment is the variance, the third relates to the
skewness and the fourth to the kurtosis. Among those, the third-order moment has a peculiar status as the
K41 hypothesis (and more precisely the combination of H1 and H3) yield the

4/5 Law: In the limit of infinite Reynolds number, the third order parallel structure function of
homogeneous isotropic turbulence, evaluated for increments ` small compared to the integral scale, is given
in terms of the mean energy dissipation per unit mass ε (assumed to remain finite and non-vanishing) by

S 3,‖ = −
4
5
ε`. (2.17)

While an exact result, one may still ponder upon the universality of this law, and its relevance when it
comes to describing finite-Reynolds simulations. Fig. 2.6 shows the third-order parallel structure function
as a function of the physical scale `, normalized by the Kolmogorov scale η. We normalize the structure
function with the pre-factor − 5

4ε` , so that it is 1 when the 4/5 law is valid. As in Fig. 2.2 and in Fig. 2.3, two
different resolutions are shown, using either 5123 (left) or 10243 (right) collocation points. For scales of the
order of 10 η and up to ∼ 500 η, deviations to the 4/5 law are clearly visible. The universality of inertial
range statistics is there polluted by finite-size effects (dissipative scales or injection scales). Still, the 4/5 law
holds approximately over a narrow range of scales. In the larger simulation, with a higher Reynolds number,
this range extends over almost one decade. This behavior is the physical space counterpart to the energy flux
observed in Fig 2.3.
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Figure 2.6: Illustration of the 4/5 law: The normalized parallel third order moment as a function of the length `

normalized by the dissipation scale η. The horizontal dash-line shows the 4/5 behavior and the vertical one the normalized
integral scale L/η. Two turbulent resolutions are resolved: 5123 collocation points in the left side and 10243 points in the
right.

2.4.2 Failure of K41 theory
In the K41 description, the turbulent velocity field is assumed to have mono-fractal statistics, characterized
by the scaling exponent h = 1/3. In principle, this should imply Gaussian statistics for the velocity field. Let
us indeed fix ` within the inertial range, and a unit vector r. The parallel increments along the unit vector can
be decomposed as

δu‖(x, `r) = (u(x + `r) − u(x)) · r =

K−1∑
i=0

δ‖u(xi, r`/K),with xi = x + ir`/K (2.18)

3specifically r⊥ := e × r with e a prescribed unit vector.
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for some prescribed K � 1 such that `/K � η. By homogeneity, the increments at positions xi,
e.g. δ‖u(xi, `/K), are identically distributed and have finite variance ∝ ε2/3(`/K)2/3. Assuming statistical
independence of the velocity increments intervening in the summation of the rhs of Eq. (2.18), and invoking
the central limit theorem should then yield Gaussian statistics for the velocity δ‖u(x, `). Besides independence,
this arguments requires K to be large enough. Now, if the statistics are Gaussian at a prescribed scale, even
large, then they have to be Gaussian at all scales from the H2 self-similarity hypothesis. However, this
conclusion is erroneous and not supported by observation. Indeed, Fig. 2.7 shows the distributions of
the parallel structure functions at various scales throughout the inertial range for the 10243 simulation.
Approximate Gaussian behavior is seen for the large separations hinting at the validity of the above argument.
Yet, as one monitors the distributions of velocity increments separated by smaller and smaller separations,
one observes clear deviation from Gaussianity. In fact, it is apparent from Fig. 2.7 that the tails become fatter
upon moving down the scales, revealing clear breakdown of scale-invariance and failure of the K41 picture to
account for the turbulent statistics.
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Figure 2.7: Probability density function of the parallel velocity increments δ‖u for various separations represented by
different colors and rescaled by their variances. The distributions are shifted vertically to enhance visibility. The dashed
line represents the centered Gaussian distribution with unit variance, defined through P(x) = exp(−x2/2)/

√
2π. The data

is obtained from a 3D simulation with 10243 collocation points.

The breakdown of self-similarity can be traced back to the behavior of the structure functions. For
simplicity, let us discuss the case of the parallel structure functions. Due to scale invariance, we expect that
the structure functions follow a power law:

S p,‖(`) ∼ `ξp (2.19)

The scaling of the second-order structure function relates to the correlation of the velocity field. It
is the physical space counterpart to the energy spectrum. For this quantity, one expects scaling close to
2/3 following the K41 axioms. As seen in the left side of Fig. 2.8, scaling is present but highly depleted
by the presence of the dissipative scales. This finite-size effect produces high uncertainty when it comes
to measuring a scaling exponent. To patch this undesirable feature, we rely on the extended self-similarity
(ESS) approach (Benzi et al., 1993), which can be seen as a technical way to accomodate dissipation.

Our ESS analysis employs the two following rather standard tricks:

1. Instead of Eq. (2.16), we monitor the scaling behavior of the structure functions:

S p(`) = 〈|(u(x + `r) − u(x)) · r|p〉 . (2.20)
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Note that the difference with the previously defined parallel structure function is the presence of the
absolute value inside the average. Hence, we are putting the analysis of odd and even structure functions
on the same footage.

2. According to the 4/5 law, we know that the third order structure function is proportional to `. Thus,
instead of `, the scaling of S p is analysed as a function of S 3, hence allowing an extended scaling range
down to the dissipative scale. This analysis allows to spot even small deviations to the K41 scaling as
shown for instance in the left panel of Fig. 2.8.
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Figure 2.8: Second order structure function. On the left side as a function of the length ` normalized by the dissipation
scale τη and on the right side as a function of the third order structure function. The blue dots display the numerical data
obtained from the 1024 run. The dash and solid lines respectively show the exponents obtained from the Kolmogorov
K41 and an arbitrary model used in ESS, in our case it is a log-normal function.

Through extended self-similarity, we characterize deviations from mono-fractal statistics (K41) by
estimating the scaling exponents of the structure functions. The left side of Fig. 2.9 shows the relation between
S 1/p

p and S 3. If the mono-fractal behavior was to hold, the lines would be parallel between them and would
follow the relation S 1/p

p /S 3 ∼ 1/3. Clearly, this is not the case and numerics display a multi-fractal behavior,
as the curves seem to converge towards each other on their right-ends. This observation is substantiated
by the right panel of Fig. 2.9, where the scaling exponents are reported. The red dash-line shows the K41
behavior characterized by the scaling ξp = p/3. Obviously, the numerical data (delimited by the black error
bars) do not follow this law, and deviations are particularly apparent from p ≥ 4. Conversely, we observe that
numerics are in good agreement with the quadratic fit:

ξp = c1 p − c2
p2

2
. (2.21)

The coefficients c1 and c2 are related through the 4/5 law (2.17), which prescribes ξ3 = 1, and
hence:

c1 =
1
3

+
3
2

c2. (2.22)

The relations (2.21) and (2.22) provide a parametric formula for the scaling exponent ξp, which
depends on a single parameter c2. This empirical fit gives an excellent description of the data, provided
that c2 ≈ 0.03. Please note that this value of c2 matches that found in previous experimental and numerical
studies (Chanal et al., 2000; Arneodo et al., 1996, 1998; Delour et al., 2001). In fact, the deviation from linear
behavior described by Eq. (2.21) can be traced back to the fluctuations of the dissipation field, as we explain
in the next section.
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Figure 2.9: Illustration of the extended self-similarity analysis. The left panel displays the relation between the structures
function S 1/p

p and S 3. The right panel displays the exponents ξp of the structure functions as a function of the moment
order p. The red dashed line shows the K41 behavior characterized by the scaling ξp = p/3. The black dashed line shows
the quadratic fit defined by Eq. (2.21). Finally, the error bars display the maximal and minimal values measured for p
using our data points. The results are obtained from the numerical simulation with 10243 collocation points.

2.4.3 K62 theory and statistics of the dissipation field
Naturally, our invocation of the central limit theorem in the previous section was conditioned on two
assumptions: statistical independence and identical distribution for the increments involved in Eq. (2.18).
In fact, it is unclear whether any of those two assumptions hold true. Assuming that the increments are
identically distributed is actually a pretty crude assumption, based on a mean-field treatment for the dissipation
field. Yet, the analysis of Fig. 2.3 revealed that the fluxes and therefore the energy dissipation are highly
fluctuating quantities. This observation is true when one looks at fluctuations in time, but also fluctuations in
space.
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Figure 2.10: Probability distribution function (PDF) of the energy dissipation rate normalized by its mean value (left
side), and of the logarithm of the energy dissipation rate (right side). In both panels the Gaussian function is plotted in a
dark dash-line. Numerics are obtained from the numerical simulation with 40963 collocation points.

Defining e(x, t) = ||u(x, t)||2/2 as the local density of energy, one can derive from the NS equations
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the local energy budget (Frisch, 1995; Duchon and Robert, 2000):

∂te + ∇ · (u(e + p)) − ν∆(e + p) = −ε(x) + f · u. (2.23)

The negative rhs of this equation is the dissipation due to the local dissipation field ε(x) := ν ‖∇u +

∇uT ‖2/2. It is an experimental fact, that the dissipation field is actually highly non-Gaussian, and rather
displays log-normal statistics (Kolmogorov, 1962; Obukhov, 1962). This holds true also in our numerics, at
least to a good approximation, as shown in Fig. 2.10. We observe that compared to a Gaussian function the
dissipation density function has very slowly decaying tails, reaching large values (see left panel of Fig. 2.10).
The log-normal statistics in fact appear when one considers the logarithm of the dissipation field instead of
the dissipation field itself. The right panel of Fig. 2.10 shows that the former is extremely close to a Gaussian,
although it is very slightly positively skewed.

0 1 2 3 4
ε`/ε

10−2 10−1 100 101 102

ε`/ε

Figure 2.11: Illustration of one slice of the coarse-grained dissipation field normalized by its mean value in the plane x−y,
using a coarse-graining scale ` ≈ 34η. The left panel displays a linear scale and the right panel displays a logarithmic
scale. Numerics are obtained from the numerical simulation with 40963 collocation points.

The essence of the K62 theory is the refined self-similarity hypothesis, namely the assumption that
the statistics of the velocity field relate to the local dissipation field. Specifically, the assumption ties the
statistics of the velocity field to the coarse-grained dissipation field as

S p,‖ ∼
〈
ε`(x)p/3

〉
`p/3, (2.24)

where the coarse-grained dissipation field is

ε`(x) =
3

4π`3

∫
|x′−x|<`

ε(x′) d3x′, (2.25)

namely the dissipation averaged over a ball of radius `.

From numerics and observations, it is known that such quantity is accurately described by log-normal
statistics. Fig. 2.11 shows a slice of this field using a coarse-graining at scale ` = 34η. It is readily seen
from Fig. 2.12 that the log-normal modeling is a very good approximation. This explicitly means that for
` within the inertial range, log (ε`/ε) ∼ N(µ`, σ`), e.g. the statistics of the coarse-grained dissipation field
are prescribed by the log-normal distribution with a mean value equal to µ` and a variance equal to σl.
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Mathematically,

Pε` (ε`) d ε` = Pln ε` (ln ε`) d ln ε` =
1√

2πσ2
`

exp
 (ln ε` − µ`)2

2σ2
`

 d ln ε`. (2.26)
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Figure 2.12: Left panel: distributions of the logarithmic values of the coarse-grained dissipation for different scales `
(colored lines), together with a Gaussian distribution (black dash-line). The distributions are centered and normalized by
their standard deviations σ`. Right panel: Relation between the variance σ2

` as a function of the length `/L (blue points).
The relation σ2

` = 9c2ln(L/`) is plotted with c2 = 0.027 (red dash-line). Numerics are obtained from the numerical
simulation with 40963 collocation points.

Log-normal distributions have finite moments which are explicitly known. The correction to K41
comes from the discrepancy

〈
ε`(x)p/3

〉
, εp/3, which can be seen as the origin of the intermittent behav-

ior of the velocity fluctuations. Specifically, the log-normal model (2.26) yields the formula Wikipedia
(2020b):

〈(
ε`
ε

)q〉
= e qµ` + q2 σ

2
`

2 . (2.27)

Taking q = 1, one obtains the relation 1 = e µ`+
σ2
`

2 . From this relation, we can express all the moments
in terms of the variance and of the average dissipation ε as

〈
ε

q
`

〉
= εq e

1
2 (q2−q)σ2

` . (2.28)

The final step is to relate the variance to the scale `. This is again a heuristic step, obtained from
observations, such as in Fig. 2.12. The right panel of Fig. 2.12 shows that the variance approximately scales
as

σ2
` = 9 c2 ln(L/`), (2.29)

where c2 can be interpreted as a “ coefficient of intermittency”. From the data shown in Fig. 2.12, we
measure c2 = 0.027 and this characterize deviations from the K41 scaling. Indeed, combining Eq. (2.24),
(2.28), (2.29) and (2.27), one obtains the formula

ξp =
p
3

+ τp/3, where τq = −
9
2

c2 q (q − 1) (2.30)
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is the scaling exponent of the dissipation field, e.g. 〈εq
`
〉 ∼ `τq .

We have retrieved the expression (2.21) previously introduced to fit the statistics of the parallel
velocity increments. This means that quadratic deviations from linear scaling can indeed be related to
fluctuations of the dissipation field, and that c2 = 0.027 indeed characterize deviations from the K41 scaling
observed in Fig. 2.9. We note that the log-normal model is only one of the many heuristic approaches
that exist in the literature to quantitatively characterize intermittency (Frisch, 1995, Chap. 8). One of the
shortcomings of the log-normal approximation is the fact that it becomes non-physical for large values of p:
For p > 1/(3c2) + 3/2 ' 13, it predicts decreasing behavior for ξp, a feature which is known to allow for
supersonic velocities, and hence contradicts the hypothesis of incompressibility (Frisch, 1995, Chap. 8). Yet,
it remains a useful approximation for values of p . 10 as considered here.

2.4.4 Local structures beyond K62 theory
The K62 framework emphasizes the role of local turbulent structures by tying the intermittent statistics
of the velocity field to the local dissipation field, and we expect that those statistics might reflect in the
statistics of the transport and mixing of particles. More crucially though, it hints that large-scale properties of
turbulence depend on local turbulent structures. This means that without ensemble averaging, we expect that
turbulent statistics differ from one region to the other, and that the dissipation field is not the only relevant
local field.

Here, we want to illustrate this point, by describing a useful partition of the physical space in terms
of strain-dominated and vorticity-dominated regions. This partition is known to be of peculiar relevance in
the context of turbulent mixing, as it shapes the patterns of preferential concentrations of inertial particles
transported by turbulent fluids, already discussed in Chapter 1 of the introduction and that will be studied
in Chapter 3. It is yet only the tip of the iceberg of a vast literature related to the stochastic modeling of
the velocity gradients, whose thorough review goes way beyond the scope of this thesis (see for example
Meneveau (2011); Chevillard (2015) and references therein).

Figure 2.13: Illustration of one slice of the local enstrophy field (left panel) and the coarse-grained 2D-slice of the
parameter ∆1/3 (right panel). Both rescaled by τ2

η at ` ≈ 32η. Numerics are obtained from the numerical simulation with
40963 collocation points.

For incompressible fluids, the partition between strain and rotating regions is based on the sign of the
parameter

∆ =

(
det(σ)

2

)2

−

(
tr(σ2)

6

)3

, where σ = ∇u = (∂iu j)1≤i, j≤3]. (2.31)
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Regions with negative ∆ define hyperbolic or strain-dominated regions, for which the velocity gradient
has three real eigenvalues. Regions with positive ∆ define elliptic regions or rotation-dominated regions,
for which the velocity gradient has one real and a pair of complex-conjugate eigenvalues (Bec et al., 2005;
Bec, 2004; Chong et al., 1990). This parameter can be seen as a 3D version of the Okubo-Weiss parameter
traditionally used in 2D flows (Okubo, 1970; Weiss, 1991; Picardo et al., 2018). As an illustration, Fig. 2.13
shows a coarse-grained 2D-slice of the parameter ∆, alongside a slice of the local enstrophy field measuring
the level of vorticity. It is readily seen that positive regions for the parameter ∆ indeed correlate to regions
with a high vorticity.

Similar to the dissipation field, the statistics of the parameters ∆± = ±∆1±∆>0 display close to
log-normal statistics, as shown in Fig. 2.14.
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Figure 2.14: Left panel: Probability distribution function (PDF) of log ∆± defined by conditioning the ∆ parameter on
elliptic regions (in red) or hyperbolic regions (in blue). Right panel: The same distributions but centered and normalized
to unit variance, revealing near log-normal behavior of ∆±.

Fig. 2.15 compares the statistics of the local energy field 2e(x, t) = ||u||2 conditioned on elliptic
and hyperbolic regions. One can see a clear asymmetry, with strain-dominated regions being on average
more energetic than rotation-dominated regions. This slightly counterintuitive asymmetry is systematic and
amplifies upon further conditioning on regions which are either “very elliptic” (δ � 1) or “very hyperbolic”
(δ � −1). In other words, the partition of the flow between rotation and strain regions is also a partition
between “quiet” and “stormy” regions for the turbulence.
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Figure 2.15: Left panel: Statistics of (twice) the local energy 2e = ||u||2 conditioned on the parameter ∆ being either very
negative or very positive, depending on a given arbitrary threshold. The two dashed-lines display the average E± of the
energy over each region. Right panel: difference between those two averages as a function of the threshold ∆0, revealing
that rotation-dominated regions are more “calm” than strain-dominated regions from the point of view of the energy.

2.5 Lagrangian statistics and correlation times
To conclude this chapter on turbulence, we wish to briefly comment on Lagrangian statistics by mentioning
some of the important correlation times that will appear in the next chapters. Here, we focus on the statistics
along the trajectories of fluid particles (tracers), whose velocities are prescribed by that of the carrier
flow.

Dissipation Statistics. In the previous section we introduced the local energy dissipation field as ε(x) :=
ν‖∇u + ∇uT ‖2/2. Fig. 2.16 shows the time evolution of this quantity, along a tracer trajectory. We observe
that this quantity is very intermittent, suggesting that the fluid particles visit different turbulent structures
along the time. We can qualitatively observe that the extreme events are not isolated events but rather seem to
arrive in bursts.
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Figure 2.16: Time evolution of the local energy dissipation field ε(x) := ν‖∇u + ∇uT ‖2/2 along a Lagrangian tracer.
Time is here rescaled by the Kolmogorov timescale τη. Numerics are obtained from the numerical simulation with 40963

collocation points.
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More quantitatively, Fig. 2.17 shows the probability distribution function (PDF) of local dissipation
field. As expected, the latter is highly non-Gaussian and displays fat-tails. As we showed in Fig. 2.12 the
statistics of the coarse-grained dissipation energy field are prescribed by the log-normal distribution (2.26).
The same behaviour is observed with the Lagrangian fluctuations of this quantity, where the PDF fit very well
with the log-normal law. In large-Reynolds-number turbulence, this distribution is also well approximated
by a stretched exponential law with an exponent ≈ 1/2 — see, e.g. , Meneveau and Sreenivasan (1991);
Kailasnath et al. (1992); Chevillard et al. (2003); Donzis et al. (2008)). This means that the dissipation energy
have a non-negligible probability of achieving extreme values which are several order of magnitudes above
the standard deviation. Along the trajectory, the dissipation field displays long-time correlations, as apparent
from the right panel of Fig. 2.17 featuring the Lagrangian autocorrelation Cε(t) = 〈ε(t)ε(0)〉. This quantity
does not decay following an exponential function. Instead, the autocorrelation decreases slowly and remains
correlated on times of the order of the integral timescale. Specifically, we estimate the integral correlation
time as

τε =

∫ ∞
0 Cε(t)dt

Cε(0)
≈ 0.58τL, (2.32)

which is indeed of the order of the integral time scale. In addition, we observe that for times t within
the inertial range, the correlation follows a power-law behavior ∝ t−β, with β ≈ 0.9 ± 0.1.
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Figure 2.17: Left panel: Probability distribution function (PDF) of the local dissipation field ε, averaged by their mean
value 〈ε〉 ≈ 0.0037. Together with a log-normal fit (dashed line) and a stretched exponential fit (dot-dashed line). Right
panel: Autocorrelation of the energy dissipation field ε. The large-eddy turnover time is shown with the vertical solid line.
The dashed-dotted line stands for exp(−t/τη). The time is here rescaled by the Kolmogorov timescale τη.

Velocity and acceleration statistics. We finally wish to comment on the correlation times associated to
the Lagrangian velocities and accelerations. Fig. 2.18 shows the autocorrelation of the velocity and of the
acceleration along tracer trajectories, defined as

〈ui(t)ui(0)〉〈
ui(0)2〉 ,

〈||u(t)||||u(0)||〉〈
||u(0)||2

〉 , etc. (2.33)

For each of these quantities, different behaviors are observed depending on whether one monitors
the correlation of the components ui’s and ai’s for i = x, y, z or one measures the correlation of the norms;
This type of behavior was previously found from experimental observations (Mordant et al., 2001, 2004).
Specifically, the velocity components decorrelate over a timescale ∼ τL, and the acceleration components
decorrelate almost instantaneously over a timescale ∼ τη. Yet, in both cases, the norms remain correlated on
timescales larger than the integral scale, and this presumably reflects the conservation of energy.
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Figure 2.18: Left panel: Autocorrelation of the velocity components ui and of the velocity norms along fluid tracers.
Right panel: Same quantity for the acceleration. In both panels the dashed-dotted line stands for fits ∝ exp(−t/τcorr),
where τcorr is a correlation time. Time is here rescaled by the Kolmogorov timescale τη.

2.6 Concluding remarks
In this chapter, we have described a few of the salient features of the Navier-Stokes equations and illustrated
the multi-scale nature of turbulent velocity fields. In particular, we highlighted the role of a few local
quantities, such as the energy, the dissipation field and a 3D analog of the Okubo-Weiss parameter in
shaping the turbulence statistics throughout the scales. We also described a few key Lagrangian properties.
Fluctuations play a crucial role in determining the statistics of small complex objects immersed in turbulent
fluids. This observation will be substantiated in the next three chapters, involving either small inertial and
elongated spheroids (Chapter 3) or small elongated and flexible fibers (Chapter 4 and 5).
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3 | Inertial spheroids in turbulent flows
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This chapter focuses on the turbulent motion of small inertial and non-deformable ellipsoids in
turbulent flows, in order to quantify the effects of non-sphericity. For simplicity, we focus on the case of
spheroids, namely ellipsoids of revolution whose shape is entirely prescribed by their aspect ratio. We
present the results of massive numerical simulations of the non-overdamped Jeffery’s equations, that provide
a parametric study of the statistics of the spheroids, depending on their shape and on their mass. We quantify
in details the Lagrangian statistics of the translational and rotational dynamics. In brief, we find that the
translational dynamics can be almost fully described in terms of a harmonic Stokes number St?: Deviations
from the spherical case can be described in terms of an effective radius built as a harmonic average. The
orientation statistics are yet more intricate: The harmonic Stokes number is relevant only for particles with
small values of their response time. For large values of the particle response time, the influence of the
shape cannot be simply related to the spherical case, and this also proves true for the patterns of preferential
concentration observed in our numerical experiments. The chapter is organized as follows. §3.1 provides
details on the modeling of the spheroid dynamics. §3.2 give details on our numerical strategy. §3.3 shows the
outcome of our numerical simulations along with their detailed analysis. We finally provide some perspectives
for future work in §3.4.

3.1 The dynamics of small inertial spheroids
The aim of this section is to recall the governing equations of motion of inertial spheroids immersed in a
fluid environment. The general equations valid for arbitrary ellipsoids are listed in Appendix A; We here
specialize to the case of spheroids. A spheroid, or ellipsoid of revolution, is defined as a solid surface with a
principal axis c and two equal semi-axes a and b (Jeffery, 1922; Weisstein, 2002). The aspect ratio λ = c/a
characterizes the shape of the spheroid; λ � 1 describes a prolate particle, λ = 1 describes a sphere and
λ � 1 describes an oblate particle. Those three cases are represented in Fig. 3.1.

3.1.1 Kinematics
The motion of the spheroids is obtained by describing both their rotational and their translational dynamics.
This involves the position of the ellipsoid center of gravity Xp, the velocity Vp, the orientation pp (later
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Figure 3.1: Representation of the three different types of spheroids depending on the value of their aspect ratio. From
left to right: oblate (0 < λ < 1), sphere (λ = 1) and prolate (λ > 1). The third semiaxis c is always aligned with the z-axis
of the particle fixed coordinate system.

prescribed by p) and the angular velocity Ωp. While translational dynamics is defined in the laboratory frame
(ex, ey, ez), the rotational dynamics is defined in the particle frame (ex̂, eŷ, eẑ).

The particle frame associated to the spheroid is most conveniently defined in terms of two quantities,
namely the unit vector p tracking the (oriented) axis of symmetry, and the angle θ measuring the amount
of rotation about the vector p (see Fig. 3.2). The pair of parameters (p, θ) prescribes four scalar quantities
known as the Euler parameters (η, ε1, ε2, ε3) defined by


η
ε1
ε2
ε3

 =


cos (θ/2)

px sin (θ/2)
py sin (θ/2)
pz sin (θ/2)

 . (3.1)

Using the Euler parameters, one can express the transformation from the laboratory frame towards the
particle frame in terms of the rotation matrix (Goldstein et al., 1980) 4

A =


1 − 2

(
ε2

2 + ε2
3

)
2 (ε1 ε2 + ε3 η) 2 (ε1 ε3 − ε2 η)

2 (ε2 ε1 − ε3 η) 1 − 2
(
ε2

1 + ε2
3

)
2 (ε2 ε3 + ε1 η)

2 (ε3 ε1 + ε2 η) 2 (ε3 ε2 − ε1 η) 1 − 2
(
ε2

1 + ε2
2

)
 . (3.2)

As a side remark, we note that the choice of Euler parameters to parametrize three-dimensional
rotations has at least two chief advantages compared to other parametrizations, such as the so-called Euler
angles. First, it is free of any “gimbal lock ” phenomenon, where one degree of freedom disappears when
two axes of rotation become parallel (Vince, 2011). Second, the transformation matrix is simple and can be
efficiently computed numerically.

The ellipsoid orientation evolves with time according to the angular velocity Ωp = (Ωx̂, Ωŷ, Ωẑ). In

4This complicated looking rotation matrix is usually deduced using quaternion calculus. The Euler parameters are then represented in
terms of the unitary quaternion q = e(θ/2)(px i+pyj+pzk), and three-dimensional rotations are computed as the transformations u→ quq−1,
with u a vector-quaternion with θ = π (Wikipedia, 2020c).
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terms of the Euler parameters, this translates into

d
dt


η

ε1

ε2

ε3


=

1
2


−ε1 −ε2 −ε3

η −ε3 ε2

ε3 η −ε1

−ε2 ε1 η



Ωx̂

Ωŷ

Ωẑ

 (3.3)

One observes that these kinematic equations preserve the norm of the Euler parameters, that is
η2 + ε2

1 + ε2
2 + ε2

3 = 1 for all t.

Figure 3.2: Illustration of the components of the Euler parameters used to switch the particle coordinates between the
inertial frame (ex, ey, ez) and the particle frame (ex̂, eŷ, eẑ).

3.1.2 Dynamics
To determine the dynamics of the ellipsoids, we now restrict our attention to the behavior of spheroids
smaller than the Kolmogorov scale τη. The spheroids are yet considered heavy enough, so that their motion is
unaffected by thermal fluctuations, and fully deterministic. The dynamics is therefore prescribed by Newton’s
equations, where the only forces acting on the spheroid are the gravity and the hydrodynamic forces.

Translational motion. Further neglecting the effect of gravity, the dynamics of the center of mass, e.g. the
translational motion, is then described by the linear momentum equations:

dXp

dt
= Vp

dVp

dt
=
ν ρ

mp
AT K̂ A

(
V f − Vp

) (3.4)

where ν is the fluid viscosity, ρ fluid density, mp = 4ρpπabc/3 the particle mass (with ρp the particle
density), K̂ the resistance tensor and V f the fluid velocity at the particle position. The resistance tensor is
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here expressed in the particle frame. It is the diagonal matrix (Oberbeck, 1876):

K̂ = 16 πaλ


(χ0/a2 + χ1)−1 0 0

0 (χ0/a2 + χ2)−1 0

0 0 (χ0/a2 + λ2χ3)−1

 (3.5)

The shape parameters χ0, χ1, χ2 and χ3 have been computed by Brenner (1964) as

χ0 = a3λ

∞∫
0

dβ
∆

with ∆(β) =

√
(a2 + β)2((aλ)2 + β),

and χ1 = a3λ

∞∫
0

dβ
(a2 + β)∆

, χ2 = a3λ

∞∫
0

dβ
(a2 + β)∆

, χ3 = a3λ

∞∫
0

dβ
((aλ)2 + β)∆

.

(3.6)

Note that the shape parameters χ1, χ2 and χ3 are dimensionless while the shape parameter χ0 has
dimension [length]2. This implies that the resistance tensor K̂ also has the dimension of a length. Expressions
for these shape factors are explicitly known for the spheroids of various shapes, and are summarized in
Table 3.1.

λ > 1 λ = 1 0 < λ < 1

χ0 −κ
a2λ
√
λ2 − 1

2a2κ (π − κ)
a2λ
√

1 − λ2

χ1 = χ2
λ2

λ2 − 1
+ κ

λ

2 (λ2 − 1)3/2

2
3
κ −

λ

2(λ2 − 1)3/2

(
κ − π + 2λ

√
1 − λ2

)
χ3 −

2
λ2 − 1

− κ
λ

(λ2 − 1)3/2

2
3
κ

1
(1 − λ2)3/2

(
λκ − λπ + 2

√
1 − λ2

)
κ log

λ − √λ2 − 1

λ +
√
λ2 + 1

 1 2 arctan
(

λ
√

1 − λ2

)
Table 3.1: Expressions for the shape factors in the case of ellipsoids of revolution with a = b and c = aλ for the three
cases: prolates (λ > 1), spheres (λ = 1) and oblates (λ < 1) (Happel and Brenner, 2012).

Rotational dynamics. In the particle frame, the angular velocity of the ellipsoid is given by

d(I Ωp)
dt

+ Ωp × (I Ωp) = T, (3.7)

where I = (Ix̂, Iŷ, Iẑ) is the moment of inertia of the spheroid and T = (T x̂, Tŷ, T ẑ) the hydrodynamic torque
acting on a spheroid. In full explicit form, Eq. (3.7) reads

d
dt


Ωx̂

Ωŷ

Ωẑ

 =


Ωŷ Ωẑ × (Iŷ − Iẑ)/Ix̂

Ωẑ Ωx̂ × (Iẑ − Ix̂)/Iŷ

Ωx̂ Ωŷ × (Ix̂ − Iŷ)/Iẑ

 +


T x̂/Ix̂

Tŷ/Iŷ

T ẑ/Iẑ

 , (3.8)
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where the moment of inertia of the spheroid about its principal axis is the diagonal matrix:
Ix̂ 0 0

0 Iŷ 0

0 0 Iẑ

 =
4

15
πρpa5λ


1 + λ2 0 0

0 1 + λ2 0

0 0 2

 . (3.9)

For the hydrodynamic torque acting on the spheroid, we rely on a standard approximation first
computed by Jeffery (1922), which relates the torque to the fluid vorticity ω = ∇ × u and to the strain tensor
S = (∇u + ∇uT )/2 as 

T x̂

Tŷ

T ẑ

 =
16
3
ρνπa3λ


1+λ2

χ2+λ2χ3

1+λ2

χ1+λ2χ3

1
χ1+χ2




1−λ2

1+λ2 S ẑŷ + ωx̂/2 −Ωx̂

λ2−1
λ2+1 S x̂ẑ + ωŷ/2 −Ωŷ

ωẑ/2 −Ωẑ

 (3.10)

The quantities S î ĵ are the components of the strain-tensor, explicitly

S ẑŷ =
1
2

(∂ŷuẑ + ∂ẑuŷ) S x̂ẑ =
1
2

(∂ẑux̂ + ∂x̂uẑ) S ŷx̂ =
1
2

(∂x̂uŷ + ∂ŷux̂) (3.11)

The approximation leading to Eq. (3.10) assumes that to leading order, the flow past the spheroid is
well-approximated by a Stokes flow. This is justified from the assumption that the spheroids are smaller than
the Kolmogorov scale, and we observe that this useful approximation is also at the core of the slender-body
theory used in the next Chapter.

Full dynamics in terms of τp. The volume of the spheroids (4/3)πa3λ is equal to the volume of a sphere
with radius r = aλ1/3. This suggests to define the spheroidal response time in terms of the usual expression
for spherical particles as (Saw et al., 2008; Bec et al., 2005)

τp =
2ρpr2

9ρν
=

2ρpa2λ2/3

9ρν
. (3.12)

In terms of τp, the translational dynamics then becomes:

dVp

dt
=

1
6πaλ1/3

1
τp
AT K̂ A

(
V f − Vp

)
, (3.13)

and the rotational dynamics is:

dΩp

dt
=

(
λ2 − 1
λ2 + 1

) 
ΩŷΩẑ

−Ωx̂Ωẑ

0

 +
40
9
λ2/3

τp


1

χ2+λ2χ3

(
1−λ2

1+λ2 τẑŷ + ωx̂/2 −Ωx̂

)
1

χ1+λ2χ3

(
λ2−1
λ2+1 τx̂ŷ + ωŷ/2 −Ωŷ

)
1

2χ1
(ωẑ/2 −Ωẑ)

 . (3.14)

Please note that, considering the case of a sphere (λ = 1) we recover the well known motion of a
massive sphere (Maxey and Riley, 1983)

dVp

dt
=

1
τp

(
V f − Vp

)
dΩp

dt
=

10
3

1
τp

ωx̂/2 −Ωx̂

ωŷ/2 −Ωŷ

ωẑ/2 −Ωẑ

 .
(3.15)
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3.2 Numerical methods
To study the motion of inertial spheroids in a fully-developed, stationary, homogeneous, isotropic turbulent
flow, we use direct numerical simulations of the three-dimensional incompressible Navier-Stokes equations
with 5123 and 10243 collocation points (see details in Chapter 2). For the purpose of the present exposition,
we here focus on the largest simulation. The numerical parameters and the relevant physical quantities are
recalled in Tab. 3.2. The spheroid equations (3.13) and (3.14) are integrated along particle paths using a
third-order Runge–Kutta time marching, together with a description of the orientation making use of the
Euler parameters.

In order to span the parameter space for the 10243 simulation, we have considered 90 different
families of 500 000 particles combining the nine aspect ratio λ = 0.1, 0.1778, 0.3162, 0.5623, 1, 1.7783,
3.1623, 5.6234, 10 and the ten response times τp = 0.0022, 0.0035, 0.0055, 0.0087, 0.0138, 0.022, 0.0349,
0.0554, 0.0879, 0.1395. The spheroids and the fluid velocity gradients along the Lagrangian paths are stored
with a period 300∆t ≈ 6.8 τη for a time duration of 17700 ∆t ≈ 400 τη ≈ 5 τL. Statistics are gathered over
approximately 4 large-eddy turnover times.

N3 ν ∆t ε η τη urms L τL Rλ

5123 5 10−4 10−3 0.4083 0.0042 0.035 0.8564 1.54 1.80 199

10243 2 10−4 5 10−4 0.431 0.0021 0.022 0.87 1.52 1.753 315

Table 3.2: Numerical and physical parameters of the direct numerical simulation

3.3 Results and analysis
We now describe our results. There is a wide amount of literature pertaining to the motion of small inertial
spherical particles, which in our numerics is recovered for the aspect ratio λ = 1. Our intention here is to
understand how non-sphericity modifies the statistics of small massive particles. We here first study in details
the Lagrangian statistics related to the dynamics of the center of mass and of the orientation, hereby providing
a full statistical picture of the Lagrangian dynamics of spheroidal particles in turbulence (see Fig. 3.3).

Perhaps, the most spectacular consequence of spherical particles being massive is their tendency to
sample the fluid non-uniformly, a phenomenon known as “preferential concentration”. We show that the
preferential concentration is not a feature specific to spherical particles. However, while the concentration
patterns are seemingly independent on their shape for light particles, they become more complicated and
possibly non-universal for heavy one. Please note that for us light particles refer to spheroids with a small
response time τp, and heavy particles to spheroids with a large one.
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Figure 3.3: The figure shows two types of spheroids, either oblate (in the left panel) or prolate (in the right panel) following
two different tracer trajectory. The red arrows show their orientations and the black ones show their accelerations.

3.3.1 Statistics of the center of mass
Root-mean-square velocity and harmonic Stokes number. To characterize the translational motion of
spheroidal particles, we begin our analysis by measuring the velocity fluctuations of the center of mass along
the Lagrangian trajectories. To do so, we introduce the particle root-mean-square velocity (later rms)

Vrms =
1
√

3

〈
V2

p

〉1/2
, (3.16)

where we recall that Vp = (Vx, Vy, Vz) is the velocity vector in the laboratory frame and the operator 〈·〉
denotes an average over both time and the number of particles. It is natural to relate this quantity to the rms
fluid velocity, and the left panel of Fig. 3.4 shows how the ratio between those two rms velocities varies as a
function of the Stokes number St = τp/τη.

For small but non vanishing values of the Stokes number St . 0.3 − 0.5, the rms velocities of the
particles are very slightly greater than the fluid rms velocity (see the zoom in the inset of the left panel). This
possibly reflects a preferential sampling in the calm strain regions of the flow a feature previously observed
by Bec et al. (2005) for spherical particles. Here, this observation remains apparently valid for all the shapes,
but the range of Stokes for which this trend is visible depends on the particle shape.

For larger Stokes, say St > 0.5, the effect of non-sphericity (λ , 1) becomes even more apparent. All
the particle rms velocities decrease with increasing Stokes numbers, but the sphere is the shape for which
this decrease is the most pronounced. In fact, both oblate and prolate particles follow the same trend and the
curves are seemingly parallel to each other for St � 1 . This feature sugests a possible universal behavior of
the rms velocities with respect to the shapes.

The universality appears in plain sight if following Shapiro and Goldenberg (1993); Zhang et al.
(2001), one introduces the harmonic Stokes number

St? =
3τpλ

−2/3

8τηK̄
, with K̄ =

1
3

(Kx̂x̂ + Kŷŷ + Kẑẑ) =
1

χ0/a2 + θiλ2χi
(H) , (3.17)

where θ1,2 = 1/λ2 and θ3 = 1 and χ0/a2 + θiλ2χi
(H)

denotes a harmonic mean involving the shape
parameters appearing in Eq. (3.13). Note that with this definition, the Stokes number for spheres (λ = 1)
remains unchanged, that is St? = St. Fig. 3.4 shows the root-mean-square velocity of each family as a
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function of St?. One clearly observes that all the curves λ collapse onto a master curve, which is independent
on the different aspect ratios, and that solely depends on the dimensionless harmonic Stokes number. This
suggests that the relevant response time of the spheroids is not the usual response time defined in terms of a
sphere with equal volume, but should be defined as τ?p = St?τη.

The inset in the right panel of Fig. 3.4 shows that the range over which the particle rms velocities are
larger than the fluid velocity is St? . 0.3, independent of the shape. Besides, as St? decreases towards 0, the
rms velocities of the particles tend to decrease towards the fluid rms velocity. This hints that as St? → 0, we
recover the behavior well established for spherical particles that the rms velocities of the particles and of the
fluid coincide. This is the standard limit describing tracer particles uniformly sampling the domain, and our
data hint that this limit is also independent of the shape, up to statistical error.
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Figure 3.4: Root-mean-square particles velocity Vrms =
1
√

3

〈
V2

p

〉1/2
as a function of the St number (left panel) and St?

number (right panel) for different families of ellipsoids λ.

Single-time velocity fluctuations. To highlight the relevance of the harmonic Stokes number beyond the
root-mean-square velocity, we study higher moments of particles velocity statistics. In particular, we compute
the kurtosis defined as:

Kurt =
〈V4

i 〉

〈V2
i 〉

2
.

This quantity measures the “flatness” of the probability distribution: if the kurtosis is large, the probability
distribution has fat tails and the extreme events are more probable; when the kurtosis decreases the probability
to have extreme events also decreases (Pearson, 1905). We recall that a reference value for the kurtosis is
Kurt = 3 corresponding to a Gaussian distribution.

The left panel of Fig. 3.5 shows the kurtosis as a function of St. The first observation is that for all
Stokes and shapes, the kurtosis is slightly below 3 meaning that the velocity components are sub-Gaussian.
We also observe that particles with smaller inertia have a larger kurtosis than heavy one. The right panel of
Fig. 3.5 shows the kurtosis now as a function of St? and we observe that similarly to the rms velocities, the
kurtosis decreases as a function of St? and collapses to a unique master curve. This suggests that the harmonic
Stokes number not only prescribes the rms average velocities but also the full velocity distribution.
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Figure 3.5: Flatness of the particle velocity components 〈V4
i 〉/〈V

2
i 〉

2 as a function of St (left panel) and of St? (right
panel).

To substantiate this possibility, we measure the fluctuations of the single-time probability distribution
of the particles velocity components. The left panel of Fig. 3.6 shows such a probability density function for
various values of St, in the case of spherical particles (λ = 1). As expected from the measurements of the
kurtosis, the tails of the distributions deplete when inertia increases. One observes a spreading in the tails of
the order of one decade at Vi = 4 Vrms between the smallest and the largest τp. The right panel of Fig. 3.6
shows the probability distributions of velocity components for λ = 0.1, 1 and 10, using selected values of
the response time chosen such that St? = 0.1, 0.4, 1, and 4. One observes that the distribution associated
to different aspect ratios collapse onto master curves that solely depend upon the harmonic Stokes number
St?. This shows that the harmonic Stokes number fully accounts for the shape of the particles at the level of
one-time velocity fluctuations of the center of mass.
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Figure 3.6: Left: Probability density functions (PDF) of the particle velocity components (normalised to unit variance)
for λ = 1 and various St. Right: Same but for different combinations of λ and τp associated to four different values of St?

(different symbols). Data has been shifted to increase visibility.

Two-time velocity fluctuations. The harmonic Stokes time also proves relevant for multiple-time velocity
fluctuations. To illustrate this point, we here characterize the two-time statistics of the particles velocity and
define the autocorrelation of the velocity components, as:

A(t) =
〈Vi(t) Vi(0)〉

V2
rms

.

The left panel of Fig. 3.7 shows that such types of correlations decrease over times of the order of the
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large-eddy turnover time τL. Besides, heavier spheroids decorrelate slower than light ones.

More precisely, we observe that the auto-correlation decays exponentially in the large time limit
as

A(t) ' exp(−t/τc),

where τc is the correlation time. The right panel of Fig. 3.7 shows the behavior of the correlation time as a
function of St?. As expected, particles with large inertia are slightly longer correlated, because the memory
effects are more important. One again observes the collapse onto four separated master curves; This suggests
that the two-time statistics of the velocity are indeed described in terms of the harmonic Stokes number
St?.
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Figure 3.7: Left: Time autocorrelation of the particle velocity components for different combinations of λ and τp

associated to four different values of St? (different symbols). Right: Correlation times obtained from exponential fits of
the time autocorrelations, shown here as a function of the harmonic Stokes number.

Acceleration statistics. The previous results suggest that the harmonic Stokes number St? can be used to
fully describe the dynamical properties of particles. This behavior describes the dynamics of spheroids as if
the orientation of the particles is not correlated with its translational dynamics. However, the fluctuations of
the velocity only involve large-scale fluctuations. It could indeed be that on such scales, the orientation is
effectively averaged in an isotropic manner. To explore this possibility, one needs to investigate small-scale
quantities and this motivates to investigate the statistics of the particle accelerations. We first compute the
root-mean-square accelerations, defined as:

arms =
1
√

3
〈(dV/dt)2〉1/2 (3.18)

where dV/dt is the particle acceleration in the laboratory frame. Fig. 3.8 shows this quantity as
a function of the (usual) Stokes number St. Data is rescaled by what is expected for fluid tracers in a
turbulent flow, namely arms ∝ η/τ

2
η = (ε3/ν)1/4. We measure arms/(ε3/ν)1/4 ≈ 1.8 in the limit S t → 0. This

value is consistent with previous measurements reported at Rλ ≈ 300. Note however that this value is not
universal; the previous studies by Hill (2002); Biferale et al. (2004); Yeung et al. (2006), showed that the ratio
arms/(ε3/ν)1/4 actually depends on the Reynolds number of the flow, due to the intermittency of turbulent
fluctuations.

As the particle inertia increases, we observe a shape-dependent decrease of the root-mean-square
acceleration that is consistent to what was for instance reported in Bec et al. (2005) in the spherical case. As
can be seen in the right-hand panel of Fig. 3.8, a non-spherical shape of the particles is responsible for an
increase of the acceleration when the response time τp is fixed.
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Figure 3.8: Root-mean-square acceleration arms as a function of the Stokes number St = τp/τη for various values of the
particle aspect ratio λ. Right: Root-mean-square acceleration arms normalized to that of a sphere, this time represented as
a function of the aspect ratio λ.

The effect of non-sphericity can in fact be described using the harmonic Stokes number. Fig. 3.9 shows
that the root-mean-square acceleration depends solely on the harmonic Stokes number St?, similarly to what
was observed for velocity. This means that the acceleration variance of spheroids can be straightforwardly
deduced from those of spheres, again suggesting some independence between the particle orientations and
the dynamics of the center of mass.

0 1 2 3 4 5 6

St⋆

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

a
rm

s/
(ε

3
/ν

)1
/
4

λ = 0.10
λ = 0.18
λ = 0.32
λ = 0.56
λ = 1.00
λ = 1.78
λ = 3.16
λ = 5.62
λ = 10.00

Figure 3.9: Root-mean-square acceleration arms as a function of the harmonic Stokes number St? = τp/τ
?
η defined in

(3.17), shown for various values of the particle aspect ratio λ.

Such a lack of correlations is however not totally true, and this is seen by looking at the statistics of
the parallel acceleration a‖ = p · a, defined as the component of the acceleration along the axis of symmetry
of the particles. Indeed, as shown in Fig. 3.10, the variance of the parallel acceleration displays a clear
dependence upon the aspect ratio λ. Besides, once normalized to the isotropic variance a2

rms, its contribution
seems independent of the particles response time (up to statistical errors). For oblate particles (λ < 1),
accelerations are stronger in the direction of p, while for prolate particles (λ > 1) accelerations are weaker.
This tendency is summarized in the right panel, which shows as a function of λ the value obtained when
averaging over the observed plateau. This correlation between the acceleration and the orientation of the
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particle can also be appreciated by measuring the distribution of the alignment between the direction of the
acceleration â = a/|a| and the axis of symmetry p of the particles. Fig. 3.11 shows that, independently of the
response time, oblate particles are more likely to accelerate in the direction of p while prolate particles are
more likely to accelerate in a direction perpendicular to the axis of symmetry.
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Figure 3.10: Left panel: Mean-square component of the acceleration along the particle axis of symmetry p, normalised
by the total root-mean-square value, shown as a function of the Stokes number St for various λ with the same color code
as the left-hand panel. Right panel: Values of the observed plateau as a function of the aspect ratio λ
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Figure 3.11: Probability density functions of the alignment, defined as the cosine of the angle θ ∈ [0, π/2] between the
particle axis of symmetry and the direction of its acceleration â = a/|a| for three different values of the Stokes number
and, each time, for various aspect ratios as labeled.

To conclude this discussion on the statistics of the acceleration, we finally show in Fig. 3.12 the prob-
ability density functions of the acceleration components (left panel) together with their time autocorrelations
(right panel). In both cases, measurements show a harmonious collapse to master curves that solely depend
on the harmonic Stokes number. This confirms the general picture for the translational motion of spheroidal
particles. As we will see in the next section, the situation is different for the rotational dynamics.
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Figure 3.12: Left: Probability density functions of the particle acceleration components ai = dVi/dt, normalized to unit
variance and obtained for several aspect ratios (different colors) but with response times chosen to maintain the harmonic
Stokes number St? to 0.1, 0.4, 1 and 4 (different symbols). Data has been shifted to increase visibility. Right: Time
autocorrelation of the particle acceleration 〈a(t) · a(0)〉/(3 a2

rms) for the same aspect ratios and harmonic Stokes numbers.

3.3.2 Statistics of the orientation
Orientation. We recall that the orientation of the particles is determined by the direction of the unit vector p
aligned with the axis of symmetry. Without further conditioning, the fact that turbulence is homogeneous and
isotropic makes the single-time statistics of p also isotropic and thus not relevant for our statistical analysis.
We thus focus on two-time quantities, in order to study how the orientation of the particles decorrelate in
time. Fig. 3.13 shows the time autocorrelation 〈p(t) · p(0)〉 as a function of time for St = 1 and various λ.
Surprisingly, the orientation is correlated over long timescales, much larger than τη and rather of the order
of the large-eddy turnover time. More precisely, we fit the large-time asymptotics with an exponential law
∝ e−t/τO , in order to evaluate the correlation time τO of the orientation. The correlation times are displayed in
Fig. 3.14, as a function of the harmonic Stokes number St? in the left panel and as a function of the aspect
ratio in the right panel. They follow a rather intricate behavior and clearly do not collapse on a master curve.
This means that the statistics of the orientation do not reduce to the dynamics of a sphere.
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Figure 3.13: Time autocorrelation of the particles orientation for St = 1 and various aspect ratios, as labeled. Inset: Same
quantities using semilogarithmic axes, hereby revealing the asymptotic exponential decay.
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Figure 3.14: Left panel: Correlation time of the particles orientation obtained from an exponential fit of the autocorrelation
as a function of St?. Right panel: Same quantity as a function of the aspect ratio λ.

Rotation rates. The rotation rates of the particles also display non-trivial dependence upon St and λ.
Fig. 3.15 shows the total mean-square rotation 〈|Ωp|

2〉, as a function of the harmonic Stokes number St?. For
all values of the aspect ratio, the rotation rate first abruptly decreases when inertia increases, up to St? ≈ 0.7
where it reaches a minimum. It then grows again, reaching a secondary maximum, and finally decreases when
St? � 1. Data do not follow a λ-independent behavior, except maybe during the first abrupt decreases, as the
zoom in the inset exemplifies. Perhaps, the apparent collapse at small St? is due to preferential concentration
effects. As argued by Bec et al. (2005), the main mechanism at play at small inertia is the tendency for the
particles to non-uniformly sample the flow; This results in the particles being ejected from regions with a high
rotation to concentrate in regions with a high strain (and a low vorticity). Such an effect is purely dynamical
and relates to the translational motion. It thus likely depends solely on St?. The behavior observed at larger
inertia differs: It couples translational motions, preferential sampling, and the inertial rotational motions.
Those behaviors are explained in more details in the next section.
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Figure 3.15: Mean-square rotation rate 〈|Ωp|
2〉 as a function of the harmonic Stokes number.
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Figure 3.16: Tumbling rate 〈Ω2
x̂ + Ω2

ŷ〉 (solid lines) and spinning rate 〈Ω2
ẑ 〉 (dashed lines) as a function of the aspect ratio

λ (in units of τη). The lines without symbols correspond to the data of Byron et al. (2015).

The right panel of Fig. 3.16 represents the decomposition of the rotation rate in spinning (rotation about
the ẑ direction, parallel to p) and tumbling (sum of rotations about the perpendicular directions x̂ and ŷ). These
rates are shown as a function of the aspect ratio, and are compared to the case of inertialess spheroids (shown
as lines without symbols) using the data previously published by Byron et al. (2015), and corresponding to a
slightly higher Reynolds number Reλ = 433 (obtained with 10243 resolution points).

Quite generally, one observes that the tumbling and spinning tendencies of inertial spheroids is pretty
much akin to that of inertialess ones: In both cases, one observes a higher tumbling of prolate particles and
a dominant spinning of oblate ones. Besides, we note that for spheres, the spinning rate is exactly 1/2 of
the tumbling rate for every shapes. However, the specific rates of the tumbling and of the spinning rates
differ considerably from the inertialess case in at least two ways: (i) For every Stokes number, the values
of the rates are considerably lower than those obtained by Byron et al. (2015). (ii) At higher inertia, the
predominance of tumbling over spinning seems to persist at rather large values of the aspect ratio, unlike the
inertialess case.

3.3.3 Spatial distributions
To conclude this chapter, and substantiate our previous observations, we finally report results on the clustering
properties of inertial spheroids. Qualitatively, a careful observer looking candidly and with rested eyes at the
concentration patterns of the particles on 2D slices through the fluid, such as the ones in Fig. 3.17, will notice
the following trends:

(i) Very light particles (St? → 0) are close to homogeneously distributed over the domain and there are no
significant difference between the different shapes.

(ii) Heavier particles (with finite St?) display inhomogeneous concentration patterns. Those patterns are
slightly more visible for the spheres than for either the prolate or the oblate particles.

(iii) The concentration patterns correlate with the corresponding vorticity field, here shown in Fig.3.18: the
particles tend to be more clustered in regions where the vorticity field is low.
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Figure 3.17: Concentration patterns seen in a 2D slice for the three types of spheroids: oblate (left), spherical (middle)
and prolate(right). The top row corresponds to light particles with St? ' 0.1 and the bottom row corresponds to heavier
particles with St? ' 4.
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Figure 3.18: 2D slice of the enstrophy field ω2 measuring local magnitude of the vorticity. The 2D slice is the same as
the one of Fig.3.17.

To measure those effects in a quantitative fashion, we investigate the two-particle statistics, and in
particular we compute the probability P<

2 (r) to find two of them at a distance less than r. This quantity is of
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particular importance when interested in collisions or coalescences between particles. For separations r in the
dissipative range, it is well known that this quantity behave as a power law P<

2 (r) ∝ rD2 where the exponent
D2 is called the correlation dimension (see Chapter 1). At both very small and very large harmonic Stokes
numbers, the particles have a uniform distribution andD2 = 3. At intermediate values, one observesD2 < 3
with a minimum (maximum of small-scale clustering) reached for St? ≈ 0.7 (see Bec et al. (2007)). We are
not aware of any previously published results describing how this picture is changed when accounting for the
particle non-sphericity.
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Figure 3.19: Left: Correlation dimensionD2 as a function of the harmonic Stokes number St? and various aspects ratios,
as labeled. Right: Sketch of the small-scale clusters for small St? (top, blue) where all particles follow a similar dynamics
and are thus aligned with each other and for large St? (bottom) where clusters are perturbed by caustics where particles
with different orientations meet.

The left panel of Fig. 3.19 shows the behavior of the correlation dimension as a function of the
harmonic Stokes number for the various aspect ratios. All curves have similar shapes with a minimum
attained at St? ≈ 0.7. For values smaller than this critical point, the correlation dimensions seem to solely
depend on St?. This implies that at small St?, only translational dynamics is important. Perhaps, this
observation can be explained by the fact that time-correlations of the dynamics are small along the trajectories.
Hence, it is the effective compressible velocity of the particles which is at play. Clusters are formed by
stretching and folding the particle concentration for long times.

For values & 0.7, the situation is different. We observe a spread of the correlation dimensions at fixed
value of the harmonic Stokes number. We note that the spherical shape is the case for which the clustering is
the most pronounced. This means that non-sphericity seems to deplete small-scale clustering when St? & 0.7
and is therefore a mechanism that acts towards homogeneization. This effect is possibly explained by the fact
that particles with different histories can meet together. Those trajectories are weakly correlated and likely
have different orientations. This effect may qualitatively explain whyD2 → 3 with a shape-dependent rate
when St � 1. This possible scenario of particle clustering is illustrated by the cartoon in the right panel of
Fig. 3.19.

3.4 Concluding remarks
Summary. The results reported here show in a systematic way the effect on the dynamics of the shape of
the particles (measured by the aspect ratio λ) and inertia (measured by the Stokes number St = τp/τη obtained
by non-dimensionalizing their response time by the viscous Kolmogorov timescale). We recovered results
from the previous work by Siewert et al. (2014a), performed in the context of particle sedimentation, and
we extended the approach in the no-gravity case to provide a detailed characterization of the fluctuations
in velocity and in the acceleration. In our view, our most salient result is the evidence that the translation
motion and the orientation statistics are only weakly coupled. The translational motion is indeed almost fully
prescribed by the motion of an equivalent sphere with response time τ?p = τηS t? based on the suitably defined
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harmonic Stokes number built from the resistance tensor. The deviations from the motion of a sphere can be
spotted at the level of the two-time statistics of the acceleration components, but remain very weak. This
decoupling may be of fundamental importance to develop practical Lagrangian stochastic models of light
non-spherical particles to be included in industrial codes such as the Saturn Code used by EDF engineers
mentioned in the introduction of this thesis. The orientation statistics display more intricate features. While
the orientation and rotation rate statistics of light particles seem fully prescribed by St?, this is no longer
valid for heavier spheroids. The threshold value is identified as St? ≈ 0.7, above which the statistics become
non-universal with respect to the shape. This behavior was found to reflect on the concentration properties of
the particles, which we characterized qualitatively and quantitatively. In particular, we recovered and extended
the observations of Bec et al. (2005, 2007) made in the spherical case, where the particles concentrate on
dynamical fractal sets whose position are correlated with the dissipative structures of the flow. Although not
yet fully understood, our study suggests new statistical models to describe how non-sphericity modifies the
fractal dimension of these concentrations.

Perspectives. This study paves the way for future work. Among the perspectives, one could wish to better
understand the interplay between the tumbling and the spinning of spheroids. Qualitative insights could
probably be obtained from theoretical study of particles within random velocity fields, for example extending
a previous approach by Vincenzi (2012) to include inertia. This line of work, along with some more detailed
characterization of the dissipative structures based on a Okubo-Weiss -like parametrization, could also serve
to better understand the preferential concentration patterns and the depletion of small-scale clustering by
non-sphericity.

We also note that including other physical effects could be interesting. We have in mind effects of
gravity (Siewert et al., 2014a); which could be easily implemented in our numerics to study gravitational
settling and perhaps also effects hydro-dynamical or physical interactions between the particles, in order to
model small but finite-size spheroids.
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4 | Fibers in a turbulent flow
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The chapter discusses the turbulent dynamics of elongated deformable objects; It specifically focuses
on the case of inextensible flexible fibers suspended in turbulent fluids. Such particles are relevant to many
industrial applications; our results highlight the crucial role of intermittent fluctuations in the Lagrangian
statistics.

The chapter is organized as follows. We first introduce a mathematical model, namely the local
slender body theory, that provides a convenient way to address the dynamics of small fibers. The model
displays a rich phenomenology, as fibers are likely to experience several kinds of instabilities, from tumbling
and buckling to super-buckling. We then described the outcome of highly-resolved numerical simulations.
We focus on the buckling statistics of small fibers induced by 3D turbulent fluctuations, and describe two
other instabilities due to flexibility, namely misalignments and super-buckling. The analysis was published as
a letter in Physical Review Letters, which we attach at the end of the chapter.

4.1 Dynamics of fibers
The objective of this section is to derive a working mathematical model to describe the dynamics of small fibers
immersed in a turbulent environment. This involves modeling the fluid/structure coupling between the (rigid)
fibers and the (newtonian) fluid. The final result will be the so-called local slender body theory.

We here consider elongated inextensible yet flexible objects with rotational symmetry: They are
characterized by their length ` and circular cross-section of radius a. The aspect ratio is assumed to be smaller
than 1, e.g. ε = a/` � 1. The fiber dynamics is then fully described in terms of the motion of the center-line
curve s 7→ X(s), parametrized by the arc-length coordinate s ∈ [−`/2, `/2] (see Fig. 4.1). The explicit
derivation of the fiber dynamics using the slender body theory relies on several further approximations and
modeling assumptions, that we now describe.
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Figure 4.1: A typical fiber in free space parametrised by the arc-length coordinate s. Mathematically, the latter describes
the local length of the fiber. In the local frame (e1, e2, e3) (also known as Frenet referential frame) the curvature of the
fiber is defined as: κ(s) = d2X

ds2 · e2.

4.1.1 Fiber without a fluid: mechanical properties
Elongated objects such as fibers are nothing but a specific type of beam, e.g. the fundamental atom of civil
engineering. In that context, a beam is defined as a solid object with one dimension larger than the two
others. To describe our fibers, we consider the simplest model of a beam, given by the Euler-Bernoulli
theory (see for instance Landau and Lifshitz (1959); Thorin and Forêt (2013) and references therein). The
Euler-Bernoulli theory relies on the three following hypothesis:

• the beam only undergoes small deformations,

• the beam is considered in a linear elasticity regime: There exists a linear relation between the stress σ
and the strain ε,

• the perpendicular section of the beam cannot be deformed by shear stresses.

The dynamics of the beam stems from the balance between the external and the internal forces. Let us
consider a small piece of the fiber as the one shown in Fig. 4.2. This small piece is subject to

• the action of the internal tensile forces T (from the left side) and T + dT (from de right side),

• the internal shear forces N (from the left side) and N + dN (from de right side),

• the internal flexural forces M (from the left) and M + dM (from right) acting as torques,

• the external forces n(x)dx and q(x)dx.

Please observe, that for simplicity, we here neglect any force likely to twist the fiber perpendicular to the
cross-section and that would be modelled as torques in the e1 direction.
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Figure 4.2: Forces and torques acting on an infinitesimal slice of beam.

The dynamics of the piece of fiber is then determined from the fundamental principle of mechanics,
which reads:

∑
F1 = T + dT − T + n(s) ds =

d
dt

(
ξ ds

dX
dt

)
· e1,∑

F2 = V + dV − V + q(s) ds =
d
dt

(
ξ ds

dX
dt

)
· e2,∑

M3 = M + dM − M + Vds + O(ds2) = 0,

(4.1)

we here non-dimensionalize mass units by the density of the surrounding fluid, so that the fiber’s mass
per unit length reads ξ = σ/(ρ f L2) where σ is the linear density of the fiber in kg/m.

To complete the description, we need to specify the rheology of the fibers. We here rely on Hookes
law valid for linear elastic materials: assuming small deformations, the theory of elasticity ties the flexural
forces to the local curvature κ(s) (defined in Fig. 4.1) through:

M(s) = E κ(s) = E
d2X
ds2 · e2, (4.2)

where E is the bending modulus (also called flexural rigidity). It is defined as E = YI, with Y the
Young modulus and I the moment of inertia. The latter is computed as πa4/4 for a cylinder of radius a (see
Appendix B for an explicit derivation). Combining this constitutive behavior to the dynamics of Eq. (4.1), we
obtain the final result:

dT
ds

+ n(s) =
d
dt

(
ξ

dX
dt

)
· e1,

−
d2M
ds2 + q(s) =

d
dt

(
ξ

dX
dt

)
· e2.

(4.3)

This equation is supplemented with the free-end boundary conditions ∂2
sX = 0 and ∂3

sX = 0 at
s = ±`/2. The equation then entirely prescribes the dynamics of the fiber provided that one can specify
the external forces f(s) = (q, n). In that case, M is prescribed by the curvature and T is prescribed by the
inextensibility constraint |∂sX|2 = 1 for all s ∈ [−`/2, `/2]. We will provide more details on this constraint
later on, when we describe the slender body equations.
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4.1.2 Fiber within a fluid: the slender body approximations
Let us now immerse our fibers in a fully developed turbulent flow, whose dynamics is governed by the
Navier-Stokes equations at high Reynolds number, as previously described in Chapter 2.

A priori, our aim here is to determine the force exerted by the fluid on the fibers in order to model
their dynamics. To that end, we use a further modeling assumption and assume that the fiber is not only thin
but also small, and in particular smaller than the Kolmogorov scale η. Previous work has exposed the SBT
framework with this hypothesis relaxed in a turbulent flow (Gay et al., 2018; Rosti et al., 2018), but this goes
beyond the scope of our work, which focuses on the dynamics of sufficiently small particles.

The combination of being small and being thin has two consequences for the fiber:

i) Because it is thin enough, it does not modify the fluid velocity field: In other words it is passive.

ii) Because it is small, it has a well-defined scale, and at the scale of the fiber, the flow is smooth,
characterized by a low Reynolds number.

The second consequence means that the linear dissipative term ν∇2u dominates over the non-linear
advection term (u · ∇) u and the velocity diffuses. Additionally, a simplifying assumption is to assume that
the flow is stationary, e.g. ∂tu = 0. This is justified as the fiber has the fastest timescale of the problem due
to its small size. From the fiber point of view, the fluid motion therefore follows a simplified form of the
Navier-Stokes equations (2.2), that reduce to the so-called Stokes approximation:

−∇p + ν∇2u = 0 and ∇ · u = 0, (4.4)

where ν is the fluid viscosity and p is the pressure field determined from incompressibility5. The
Stokes equation does not fully specify the coupling between the fiber and the fluid environment. To that end,
we need to supplement Eq. (4.4) with boundary conditions, both in the far field away from the fiber and on
its surface. Because the fiber is small, it does not affect the far field velocity: the far field velocity is therefore
identified to the background velocity field, here denoted by u0. From the viewpoint of the fiber, the latter is a
constant both in space and in time. On the surface of the fiber, we prescribe the standard no-slip boundary
conditions for the tangential velocity, together with the impermeability condition for the normal component.
Let us now denote as Γ the fiber surface and let uΓ be the fiber surface velocity. The full boundary conditions
for the fluid velocity therefore read:

u(x) = uΓ for Γ and u(x) = u0 for ||x|| → ∞. (4.5)
5Please recall that we have assumed from Chapter 2 that the fluids have unit densities, so that kinematic and dynamic viscosity

coincide.
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Figure 4.3: Left panel: small fiber of length ` immersed on a fluid parcel of size η (dissipative scale) where u0 is the
background velocity fluid. Right panel: zoom on the fiber. The fiber position X(s, t) is described along the arc-length
s ∈ [−`/2, `/2], as well as the force per unity length is f(s). On all the point of the surface fiber Γ, the velocity is described
by uΓ. The aspect ratio is prescribed as a/` � 1, where ` is the length of the fiber and a its radius. Note please, that the
fibers are very small compared to the Kolmogorov scale η. If we observe the dynamics from this scale, the velocity field
is not feeling any effect from the fibers.

In other words, the fluid velocity is equal to uΓ at the surface of the fiber and far away is equal to the
background velocity flow u0. This is shown in Fig. 4.3, where the fluid background is equal to u0 for a fluid
parcel of the size of the dissipation scale η.

Let us come back to the fiber dynamics. In principle, if one can successfully resolve the Stokes
equations with the conditions (4.5), then one can specify the dynamical external forces f(s) = (q, n), which
are the forces exerted by the fluid on the fiber. In that case, the set of Eq. (4.3) previously introduced describes
the full dynamics of the fiber. The problem that we face, is that in full generality, the hydrodynamical forces
are hard to determine because the boundary-value problem prescribed by Eq. (4.4) and (4.5) is difficult to
solve.

In fact, resolving the Stokes equations is only possible when the geometry of the body is “sufficiently
simple”. The most famous case is when we consider a sphere of radius a. The Stokes velocity past a static
sphere is easily computed as:

u(x) = u0 −
3
4

a
x

(
u0 + (u0 · x)

x
x2

)
−

a3

4x3

(
u0 − 3(u0 · x)

x
x2

)
,

from which one obtains the drag force exerted by the fluid on the sphere f = −6πu0νa (see for
example Pozrikidis and Jankowski (1997)).

Conversely, if the object has a complex geometry such as our fibers, resolving the Stokes equations
becomes very cumbersome. For this reason we rely on a standard approach known as slender body theory,
first introduced by Batchelor (1970a,b). This approach is slightly circumvented but efficient: Rather than
determining the force exerted by the fluid, we determine the fluid flow compatible with the local deformation
and the far field asymptotics.

The first step is to recast Eq. (4.3) as an expression for the external forces. Explicitly, Eq. (4.3) is
equivalent to

f(s) = ∂t(ξ∂tX) − ∂s(T ∂sX) + E ∂4
sX. (4.6)
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As a further simplifying approximation, we assume that the inertia of the fiber can be neglected, so
that the external forces depend only on the rheology, that is

f(s) = −∂s(T ∂sX) + E ∂4
sX. (4.7)

Physically, such an approximation is known as an over-damped approximation. Its practical outcome is to
relate the external forces f(s) to the local deformation of the fiber. 6

The second step is to invoke Newton third law of action-reaction, which implies that the fiber is in
turn effectively applying on the fluid a force of opposite direction with equal magnitude ‖f(s)‖, and we now
want to determine the fiber velocity to which it corresponds. Because of the no-slip boundary condition
between the fiber and the fluid, this velocity matches that of the fluid in this region of space. The problem that
we need to solve now is to determine the fluid velocity field generated by this force. This is again difficult,
unless we rely on the fact that a slender fiber is by definition very thin. Its effect on the fluid can reasonably
be modeled by a continuous line of punctual forces:

F f iber→ f luid(x) =

∫ `/2

−`/2
f(s)δ(x − X(s))ds, (4.8)

where f is determined by Eq. (4.7), and δ is the Dirac delta function. This methodology allows to replace
the boundary value constraint on the fiber by a singular force, which we know how to handle. Indeed, to
determine the velocity field, we can now solve the singularly forced Stokes equations

∇p − ν∇2u = F f iber→ f luid(x) and ∇ · u = 0,
with boundary condition u(x) = u0 for ||x|| → ∞.

(4.9)

A wily manner to resolve such linear problem is to use the Stokeslets tensor:

G(x) =
1

8πν

(
I

|x|
+

xx
|x|3

)
, (4.10)

which produces the fundamental solution uS tokeslets = G · f0 to the Stokes equation forced by a punctual
force f0 located at the origin:

∇p − ν∇2u = f0δ(x) and ∇ · u = 0,
with boundary condition u(x) = 0 for ||x|| → ∞.

(4.11)

The velocity field associated to the problem Eq. (4.9) is then simply and is given by a convolution
involving the Stokeslets along the fiber length, superimposed on the background flow:

u(x) = u0 +

∫ `/2

−`/2
G(x − X(s)) · f(s)ds (4.12)

The velocity field generated by the fiber is therefore:

u(x) = u0 +

∫ `/2

−`/2

f(s)
8πν
·

(
I

|x − X(s)|
+

(x − X(s))(x − X(s))
|x − X(s)|3

)
ds, (4.13)

where recall that f(s) represents the forces per unit length acting on the surface of the fiber. As
a side remark, we observe that the fundamental solution of Eq. (4.11) exactly matches the leading-order
correction to the background flow of the Stokes flow past a sphere given by Eq. (4.1.2), provided f is the

6Please observe that the validity of the SBT framework does not rely on the over-damped approximation.
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drag force. Hence, since the expression (4.14) relies on the Stokeslets solution, it only considers the leading
orders corrections generated by a finite-size fiber on the background flow. To model more accurately the
field not too far away from such a fiber, higher-order corrections such as Stokes dipoles could very well be
introduced (Johnson, 1980).

To complete our derivation of the slender body equations, we compute the velocity at a distance a
away from the line singularity (recall that a is the cross-section radius). The velocity of the fiber elements is
then identified to

∂tX(s) = u(X(s) + ae2) =

u0 +

∫ `/2

−`/2

f(s′)
8πν

·

(
I

|ae2 + X(s) − X(s′)|
+

(ae2 + X(s) − X(s′))(ae2 + X(s) − X(s′))
|ae2 + X(s) − X(s′)|3

)
ds′.

(4.14)

This equation describes a slender body dynamics without any further approximation. It is closed but
cumbersome to use as it involves a non-local integral operator on the right-hand side.

Figure 4.4: Illustration of the local approximation invoked in Eq. (4.16) that gives rise to the local slender body theory:
The dominant contribution comes from the local region of space I<, and the non-local contribution I> is negligible.

For the sake of simplicity, we would better have a local model, namely the local slender body theory.
This motivates a further round of approximations to simplify the integrals appearing in Eq. (4.14), essentially
justified by the fact that the fibers are considered in a small deformation regime; this also means that the
variation of the internal forces along the fibers are not too strong. Mathematically we therefore make the
approximations:

X(s) − X(s′) ≈ (s − s′)∂sX(s) and
∫

f(s′) · G(s − s′) ≈ f(s) · G(s − s′), (4.15)

and split the resulting integral in two parts I<, I> (see Fig. 4.4) defined as:

I≶ =
f(s)
8πν
·

∫
|s−s′ |≶a

(
I

|ae2 + (s − s′)∂sX(s)|
+

(ae2 + (s − s′)∂sX(s))(ae2 + (s − s′)∂sX(s))
|ae2 + (s − s′)∂sX(s)|3

)
ds′. (4.16)

Recalling a � `, it is then straightforward to estimate:

I< ∼ O
(

f (s)
8πν

)
and I> ∼ −2 log ε

(
f (s)
8πν

)
· (I + ∂sX(s)∂sX(s) ) , (4.17)

where we recall that ε = a/` is the aspect ratio of the fiber. The main contribution to the dynamics is therefore
due to the mean-field contribution of the fiber pieces sufficiently far compared to the cross-section radius. We
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then obtain the local slender body equations 7:

∂tX(s) = u0 +
1

8πν
[b D f(s) + K [f(s)]] . (4.18)

The presence of the mobility matrix D = I + ∂sX ∂sXT reflects the anisotropic drag exerted by the
fluid on the slender fiber and the parameter b = −ln(ε2) is much larger than 1. K [f(s)] is a correction term
accounting for the non-local effect and here set to 0: As announced, the non-local effects are neglected in the
local slender body theory.

4.1.3 Fibers within a turbulent fluid
Background turbulent field. The local slender body equations (4.18) rely on the validity on the Stokes
equations at the scale of the fibers. In a fully developed flow, this approximation certainly holds provided the
fibers are smaller than the Kolmogorov dissipative scale η. This property suggests to replace the constant
far-field velocity u0 of Eq. (4.18) by the local turbulent velocity u0(X, t), as represented in Fig. 4.3. As a
refinement, the small-fiber approximation then suggests to linearize the fluid velocity along the fibers as
u0(X, t) ≈ u0(X̄, t) + A(X̄, t) (X−X̄) where A denotes the velocity gradient Ai j(X, t) = ∂ jui(X, t). Please note,
that because of the absence of inertia, the center of mass X̄(t) follows the dynamics of a simple tracer, namely
dX̄/dt = u0(X̄, t). Eq. (4.18) with the corresponding turbulent background flow u0(X, t) and the external
forces applied by the fiber on the fluid f(s) = ∂s(T ∂sX) − E ∂4

sX, then becomes

∂tX(s, t) = u0(X̄, t) + A(X̄, t) (X−X̄) +
b

8πν
D

[
∂s(T ∂sX) − E ∂4

sX
]
. (4.19)

This equation is supplemented with the free-end boundary conditions ∂2
sX = 0 and ∂3

sX = 0 at
s = ±`/2.

Tension. The tension, denoted T (s, t), is the Lagrange multiplier associated to the inextensibility constraint
|∂sX|2 = 1. The tension is intrinsically non local. The equation it solves is obtained by observing that
∂t |∂sX|2 = 0 and a little patience; it reads

∂2
sT −

1
2
|∂2

sX|2 T = 3 E |∂3
sX|2 +

7
2

E ∂2
sXT∂4

sX −
8πν
2b

∂sXTA(X, t) ∂sX, (4.20)

with the boundary conditions T = 0 at s = ±`/2. This equation is analogous to the Poisson equation
satisfied by the pressure in incompressible fluid dynamics.

From Eq. (4.19), it appears that the dynamics of a given fiber depends on a single dimensionless
parameter only; Specifically, the non-dimensional flexibility

F =
8π ν `4

b E τη
(4.21)

measures the ratio between the elastic relaxation time associated to the fiber/fluid interaction τel =
8π ν `4

b E and the fluid dissipative time-scale τη. 8 For small values of F , the fiber is very rigid and behaves as
a rod, while for large F , it is very flexible and bends. In this second case, the dynamics is much richer: In
particular, small values of E allow the fibers to experience buckling instabilities which alter their geometry.
This mechanism is the focus of the next section.

7For a fluid with non-unit density the rhs should involve the dynamic viscosity instead of the kinematic viscosity, namely the
pre-factor 1

8πρν instead of 1
8πν .

8Alternatively, the flexibility is also the fourth power of the ratio between the length of the fiber and the elastic length `e =

(bEτη/8πν)1/4.
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4.2 Numerical methods
To study the dynamics of small inextensible fibers in a fully-developed, stationary, homogeneous, isotropic
turbulent flow, we use direct numerical simulations of the three-dimensional incompressible Navier-Stokes
equations with 40963 grid points, which we described in Chapter 2 and whose essential parameters are
summarized in Table 4.1.

N3 ν ∆t ε̄ η τη urms L τL Rλ

40963 10−5 6 × 10−4 3.8 × 10−3 7.16 × 10−4 0.051 0.19 1.86 9.68 731

Table 4.1: Numerical and physical parameters of the direct numerical simulation.

Once in a steady state, the flow is seeded with several millions of tracers. The tracer dynamics is then
integrated jointly with the fluid, employing the same time step and using a cubic interpolation of the velocity
field at the positions of the particles. The trajectories and the fluid velocity gradients along the Lagrangian
paths are stored with a period 20∆t ≈ 0.23 τη for a time duration of 63000 ∆t ≈ 740 τη ≈ 3.9 τL.

Once the flow is computed and the trajectories are stored, we integrate the local slender body equation
(4.19) along the tracer trajectories, using the finite-difference scheme proposed by Tornberg and Shelley
(2004). The equation of motion is discretized using a second-order scheme in time, and second-order finite
difference scheme in space, to estimate the spatial derivatives. In addition, to avoid temporal stiffness, the
bending forces are treated implicitly and the tension equation ensuring that the fibers remain inextensible is
treated explicitly. This scheme is also known as the semi-implicit Adams-Bashforth scheme (see Butcher and
Goodwin (2008)).

In our numerical simulations, the fiber is discretized with n = 201 points along the fiber arc-length
s. The inextensibility constraint is enforced by a penalization method (see the details in Appendix C) .
Time marching uses a Lagrangian time step ∆tfib = 2.5 × 10−5. We use a linear interpolation in time to
estimate the velocity gradient at a frequency higher than the output from the fluid simulation. Note that the
time step required for the fibers is much smaller than that of the fluid. Indeed, we observed that, even by
using a semi-implicit scheme, the problem remains particularly stiff when the bending modulus is small or,
equivalently, when the fluid viscosity is large. As we will now see, these values of the parameters are of
particular relevance. The full numerical code that integrated small fibers using turbulent data, is presented in
Appendix C.

4.3 Results
The main outcome of our numerics is a detailed statistical study of the buckling instability of small inextensible
fibers due to the turbulent fluctuations. The analysis is described in the work Allende et al. (2018) (attached
at the end of this chapter) and published in Physical Review Letters in 2018. Our main observation is that
fibers behave most of the time akin to stiff rods. Deviations to this configuration occur through very rare
and intermittent buckling events, which we relate to the long-term Lagrangian correlations of the turbulent
velocity gradients. We here provide additional statistics to substantiate this relation, and also comment on the
dynamics of the fibers beyond the buckling instability.

4.3.1 What is the buckling instability?
The dynamics of the fibers involves the competition between the internal elasticity forces and the drag forces
due to the fluid. Most of the time, those forces seem to act concomitantly in order to straighten the fiber,
resulting in an unsophisticated stiff rod dynamics. In a turbulent environment, this configuration may however
be destabilized because of the violent and intermittent fluctuations of the velocity gradients. In other words,
the flow is likely to violently and suddenly compress the fibers, which in turn may buckle. This phenomenon
is known as the buckling instability.
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Figure 4.5: Illustration of the two configurations of the fiber, either stretched as in the left panel or buckled as in the right
panel.

When fibers are in the rod-like configuration (see the left panel of Fig. 4.5), the elasticity forces are
zero and the tangent vector is constant along the fibers, explicitly:

∂sX(s, t) = p(t) ∀s ∈ [−`/2, `/2]. (4.22)

In this case, the tension equation (4.20) is solved by the quadratic profile

T (s, t) = −
2πν
b

γ̇(t)
(
s2 −

`2

4

)
. (4.23)

Substituting this expression in the local slender body equation (4.19) yields

d
dt

p = Ap − γ̇ p, with γ̇(t) = pTA(t) p. (4.24)

The latter is a specific form of a more general equation known as Jeffery’s equation, describing the
dynamics of straight inertialess ellipsoidal particles Here, the direction of p fully describes the configuration
of the rod-like fiber. Its dynamics is prescribed by the action of the gradient tensor A. The quantity γ̇, known
as the instantaneous shear rate, measures the stretching/compression of the fluid on the fiber: When γ̇ > 0 the
fiber is stretched by the flow, and conversely when γ̇ < 0, the fiber is compressed by the flow. It means that in
principle, buckling can only occur when γ̇ is large and negative.

Note that when fibers are in a buckled state (see the right panel of Fig. 4.5) the elasticity forces
become important and the dynamics has to be described by the local SBT model (4.19) in full.

4.3.2 Tracking-down buckling events
To get more quantitative insights about the buckling instability, we need to identify such events. We here
discuss two different ways to achieve this task: monitoring either the bending energy along the fiber or the
end-to-end length.

4.3.2.1 Using the bending energy

The bending energy relates to the curvature along the fiber: the curvier, the higher the bending energy.
Mathematically, we measure the bending energy as

Ebend =
E
2

∫ `/2

−`/2
κ2(s, t) ds = E

(0)
bend

〈
(κ`)2

〉
`
, (4.25)

where κ(s) = |∂2
sX| is the fiber curvature, the angular bracket denotes a spatial average along the fiber

and E(0)
bend = E/(2`) is a reference energy. When the bending energy is vanishing, the fiber is completely

straight; and when it is strictly positive, the fiber is buckled. Buckling instability is thus naturally characterized
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by the bending energy becoming very large. We later measure the bending energy in units of E(0)
bend, hereby

identifying the bending energy to the average squared curvature
〈
(κ`)2

〉
`
. This non-dimensional quantity

characterizes the buckled configuration of the fiber regardless of the value of its bending modulus E.
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Figure 4.6: Main panel: Time evolution of the bending energy Ebend computed along a single turbulent tracer trajectory.
Inset: Energy bending in a logarithmic scale for a single buckling event between 440 . t/τη . 500, together with the
fiber shape at t ≈ 440. The bending energy is expressed in units of E(0)

bend and time is expressed in units of the Kolmogorov
timescale τη. In these units, the large-eddy turnover time is τL ≈ 190 τη.

Fig. 4.6 shows the time evolution of the bending energy for various arbitrary values of the non-
dimensional flexibility F , computed along a specific Lagrangian trajectory. We observe in Fig. 4.6 that
bending events are sparse and their statistics are intermittent. Such events are separated by long periods
during which the fiber is fully straight, up to numerical precision. For instance, one observes Ebend ≈ 0 in
the time interval 0 . t/τη . 200. The inset of Fig. 4.6 highlights the bending energy for three values of the
flexibility F in a logarithmic scale. Yet, one can also observe that the buckling events themselves depend on
the specific value of the flexibility. For example, for the same realisation of the turbulent statistics, the larger
the non-dimensional flexibility, the higher the bending energy. Moreover, the increases of energy follow the
same trend, with a fast initial growth followed by a slow decay.

The bending energy is non-negative when the flow compresses the fiber and this corresponds to the
shear rate γ̇ taking negative values. To gain statistical insight on those events, a natural quantity to introduce
is then the instantaneous flexibility. This positive quantity normalizes the values of the shear rate by the
elastic relaxation time τel as

Floc(t) = |γ̇(t)| τel = τη |γ̇(t)| F . (4.26)

Fig. 4.7 shows the average of the bending energy for different values of the non-dimensional flexibility
F , conditioned on the values of Floc (and on γ̇ being negative). As expected, for small values of the
compression, that is for small values of |Floc|, the conditional average bending energy is small and its shape
apparently not universal. Beyond a critical value, though, it reaches an asymptotic behavior that is seemingly
independent of the flexibility. This feature is apparent through the collapse of the three graphs, corresponding
to three different values of the flexibility.
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Figure 4.7: Left panel: Mean values of the bending energy conditioned to the negative values of the instantaneous
flexibility Floc for three different values of the non-dimensional flexibility F . Right panel: Probability distribution
function (PDF) of the bending energy for three different values of the non-dimensional flexibility F . The bending energy
is expressed in units of E(0)

bend.

One can remark that the average bending energy apparently saturates for high values of the compres-
sion. In our understanding, this saturation is the result of the energy balance between the work generated by
the internal forces of the fiber and the fluid flow. The total energy of the fiber is not constant in time due to its
interaction with the fluid and the work done by the fluid. Since the dynamics of such small fibers is found in
the over-damped limit, the kinetic energy can be neglected. Using Eq. (4.3), we therefore obtain the energy
balance

−ε =
d
dt

(〈Etension〉 + 〈Ebend〉) . (4.27)

This means that fibers in average give energy to the system, acting as a forcing on the fluid and the
injected power exactly balances the energy dissipation rate of the turbulent flow (see Chapter 2). This also
implies that the average bending energy cannot exceed the initial average energy of the fiber.

In addition, Fig. 4.7 shows the probability distribution of the bending energy for different values of
the non-dimensional flexibility. It is seen that the fluctuations of the bending energy are apparently universal
and scale as P(Ebend) ∼ 1/Ebend over ten decades of Ebend. This scaling is apparently very robust and does
not depend on the flexibility, at least when the latter is large enough. We note that the scaling does not
prevent normalizability of the PDF. Indeed, for small Ebend, the scaling breaks down and this reflects the
non-universality of the onset of the buckling instability. For large Ebend, the scaling needs to break down:
From the energy balance (4.27), the average internal energy of the fiber is decreasing with time. Hence,
the average bending energy is necessarily finite, and the scaling P(Ebend) ∼ 1/Ebend cannot hold in the limit
Ebend → ∞.

4.3.2.2 Using the end-to-end length

Beyond the bending energy, the end-to-end length is also a very simple manner to measure the buckling of a
fiber. This quantity is defined as the distance between the two ends of the fiber, namely

R(t) = |X(`/2, t) − X(−`/2, t)|. (4.28)

Clearly, when R = ` the fiber is totally stretched, and it is buckled when R < `. The main panel
of Fig. 4.8 shows the time evolution of the end-to-end length along a single trajectory, for various non-
dimensional flexibilities F . This reveals the same phenomenology as previously seen using the bending
energy: fibers are most of the time stretched and bending events are sparse and intermittent. The inset of
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Fig. 4.8 highlights a single event of buckling, where the length 1 − R(t) is now displayed using a logarithmic
scale.
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Figure 4.8: Time evolution of the end-to-end length R(t) computed along a single turbulent tracer, for three different
values of the non-dimensional flexibility F . A single event is represented in the inset, where the length 1 − R(t) is plotted
for times between 440 . t/τη . 500, together with the fiber configuration at t ≈ 440. Time is here rescaled by the
Kolmogorov timescale τη. Recall that in these units, the large-eddy turnover time is τL ≈ 190 τη.

Fig. 4.9 shows the probability distribution of the end-to-end length, obtained by averaging over both
time and the fibers, for different values of the non-dimensional flexibility. As expected, the probability is
maximal for values equal to the length of the fiber `, because the fibers spend most of their time in a stretched
configuration. The probability decreases with the end-to-end length, meaning that the probability of achieving
very buckled configurations is small. In addition, and in accordance with the intuition, we observe that it is
more likely for fibers with larger flexibilities to attend small values of R.
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Figure 4.9: Probability distribution function (PDF) of the end-to-end length R for three different values of the non-
dimensional flexibility F .

4.3.3 Buckling in turbulence: an activated process?
In order to relate the statistics of buckling events with the turbulent fluctuations, we need to define buckling
in a more quantitative fashion. For simplicity and because it exhibits patterns qualitatively similar to that of
the bending energy, we here choose to work with the end-to-end length. To identify the buckling events, we
introduce threshold values Rc. The fibers are then unambiguously considered as “buckled” when R(t) < Rc,
and we define the probability of buckling Φc as the fraction of time spent by the fiber in such a state. Left
panel of Fig. 4.10 shows the buckling probability as a function of the non-dimensional flexibility for different
thresholds Rc. Qualitatively, one can see that choosing different thresholds does not modify the overall
behavior of the buckling probability. The main feature displayed in the left panel of Fig. 4.10 is the fact that
the buckling probability behaves for large values of the flexibility F as

Φc ∝ e−(F ?
c /F )α ,with α ' 0.50. (4.29)

This behavior is very reminiscent of an Arrhenius law (see for example Eyring (1935); Laidler (1984)), which
describes the kinetic rate of chemical reactions as being proportional to the factor e−(Ea/kBT ). In this analogy,
the quantity (F ?

c )α plays the role of the activation energy and relates to the buckling threshold. The flexibility
F α has a catalytic role akin to the temperature: high values of F α enhance the buckling rate.

While heuristic, this analogy motivates further investigation. In particular it raises the question as to
whether the buckling statistics could perhaps be modeled in terms of a (simple) stochastic activated process,
similar in flavour to the Kramer’s escape problem, which describes the jumping rate of an over-damped
Brownian particle in a double-well potential (see Appendix D for more details). The right panel of Fig. 4.10
shows the statistical behavior of the inter-buckling time Tb for the prescribed threshold Rc = 0.999 `. It
features the behavior:

〈Tb〉 ∝ e(F ?
c /F )β ,with β ' 0.15, (4.30)

The fact that the exponent β ' 0.15 that stretches the exponential is different from the exponent α ' 0.50
measured for the buckling rate suggests that buckling by turbulent fluctuations cannot be simply modeled by
the standard white-noise Kramer’s problem described in Appendix D. Modeling of such anomalous Arrhenius

Université Côte d’Azur 70



4.3. RESULTS CHAPTER 4. FIBERS IN A TURBULENT FLOW

law requires to understand better the property of the turbulent fluctuations, which here act as an underlying
triggering noise with non-trivial time correlations.

104 105

F

10−6

10−4

10−2

100
B
u
ck
li
n
g
p
ro
b
ab

il
it
y
Φ

Rc 0.99999
Rc 0.9999
Rc 0.999
Rc 0.99
Rc 0.9
∝ exp(−(F⋆

1/F)0.54)
∝ exp(−(F⋆

2/F)0.50)

104 105 106

F

0

0.5

1

1.5

(F
/
F

⋆
)0

.1
5
lo
g
〈T

b
〉/
T

Figure 4.10: Left panel: Buckling probability Φ as a function of the non-dimensional flexibility F . The different
curves show the fraction of time for which R(t) < Rc, together with the fit (4.29) and (4.30) in dashed line. Right panel:
Compensated plot for the average time 〈Tb〉 between two consecutive buckling events, showing the law (4.30).
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Figure 4.11: Top panel: instantaneous shear rate along one turbulent tracer trajectory. Middel panel: compressive
component of the shear rate −γ̇− along the same trajectory. Bottom panel: End-to-end length along the same trajectory
for F = 1.6 × 105.

The natural “turbulent observable” to investigate is the instantaneous shear rate γ̇ introduced in
Eq. (4.24) and which measures how fibers are stretched and compressed by the velocity gradient of the
turbulent flow. As shown in Fig. 4.11, the shear rate is a very intermittent quantity. Fig. 4.12 shows
the probability distribution function (PDF) of γ̇: the latter is highly non-Gaussian and displays stretched-
exponential tails with exponent ≈ 0.5. This means that the fibers have non zero probability to be subject to
extreme shear from the surrounding fluid environment, and in particular to extreme compression. To analyze
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the compressive events that may trigger buckling, we define the flow compression as

γ̇−(t) = max(−γ̇, 0).

It is apparent from Fig. 4.11 that bursts of the compression rate highly correlate with the buckling events as
monitored by the end-to-end length.

The statistics of the turbulent compression are revealed by computing its auto-correlation

ρ(t) = cov
(
γ̇−(t), γ̇−(0)

)
/Var(γ̇−). (4.31)

This quantity displays two regimes: For times of the order of the Kolmogorov timescale, the auto-
correlation is well approximated by an exponential function, and we estimate the corresponding integral
correlation time as

τ− =

∫
ρ(t)dt ≈ 2.8τη. (4.32)

This describes the correlation between pikes in the same compression burst. At larger times the exponential
behavior breaks down, and the autocorrelation regime decreases at a much slower rate, revealing long-time
correlation between the different bursts.
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Figure 4.12: Left panel: Probability distribution function (PDF) of the instantaneous share rate γ̇, where its mean value
is 〈γ̇〉 ≈ 0.11/τη and its standard deviation is ≈ 0.2/τη. The dashed line represent the function ∝ exp(A (γ̇ τη)0.54) with
A ≈ 9. Right panel: Autocorrelation of the negative components of γ̇, calculated as ρ(t) = cov (γ̇−(t), γ̇−(0)) /Var(γ̇−).
The dashed-dotted line stands for exp(−t/τη). The dashed line shows a slope −0.7. The large-eddy turnover time is shown
with the vertical solid line. Time is here rescaled by the Kolmogorov timescale τη.

This behavior akin to the so-called on-off intermittency phenomenon (Platt et al., 1993) drives the
buckling statistics of fibers involved in a turbulent environment. Therefore, quantitative modeling strategies
involving stochastic processes should use this coloured statistics as inputs. This is probably the reason why
the Arrhenius law displays anomalous features. While we have not attempted to write down an effective toy
model to recover those exponents, this constitues a very natural perspective to go beyond the scope of the
present thesis.

4.3.4 Beyond buckling instability
The previous analysis was focused on the buckling instability, which as we will see in the next Chapter is
key to understanding the onset of fragmentations. Apart from compressive events, the fiber also experiences
effects of vortical motion. This leads to other physical effects, including non-trivial statistics of alignments
for the orientations of fibers depending on their flexibility. The combination of flexibility and rotation also
yields “super-buckling” events , that allow the fibers to switch their orientations differently than rods. Our
aim here is to briefly describe each of those two physical phenomena.
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4.3.4.1 Alignement of fibers

We have observed that buckling instabilities are the result of the compression exerted by the flow. As
previously described, fibers feel not only the shear but also the rotation induced by the turbulent gradient.
Hence, a natural question to ask relates to how the rotation affects the dynamics of our small fibers. It is known
from previous work that stiff-rods, have a preferential alignment with the fluid stretching (see Pumir and
Wilkinson (2011); Ni et al. (2014)), somewhat similarly to what was also observed for the turbulent vorticity
vector ω = |∇ × u| by Xu et al. (2011). This means that small rod-like particles should be preferentially
aligned with the turbulent vorticity vector. To quantify deviations from this behaviour due to the presence of
flexibility, it is therefore natural to use rods as a reference dynamics that we can compare to the full fibers’.
Since fibers remain most of the time stretched as rods, they are also expected to be preferentially aligned under
with the main direction of fluid stretching. In this configuration, both fibers and rods are then rotating with an
angular speed given by the vorticity of the turbulent flow. The dynamics of the fiber is then indistinguishable
from that of a rod, whose direction p(t) initially coincides with the direction of the end-to-end vector

R(t) = X(`/2, t) − X(−`/2, t) (4.33)

Such a rod, we later refer to as the tangent rod. Conversely, when fibers buckle the coupling between the
two dynamics seems to be lost, and deviations exist between the end-to-end vector and the direction of the
tangent rod p(t), as can be observed in Fig. 4.13.

Figure 4.13: Snapshot of a fiber X(s) with flexibility F = 1.6×105 together with the direction p of its tangent rod. The
end-to-end vector R and the tangent rod orientation p have an angle θ between them.

To quantify those, we introduce the tangent angle θ between the orientation p of the tangent rod and
the end-to-end vector R of the fiber, and measured as:

θ = cos−1
(

R · p
|R| |p|

)
. (4.34)

The probability distribution function of the tangent angle is shown in Fig. 4.14.

As expected, the peak value of the distribution is found at θ = 0, that is: the fibers and their tangent
rods are most of the time perfectly aligned. While the probability sharply decreases as θ increases up to
π/2, the probability of observing “misalignments” is not zero. In addition and quite intuitively, fibers with
a small values of the flexibility F are less likely to achieve large values of θ. The surprising feature of the
distribution is however the presence of another sharply pronounced peak at θ = π. This means that the fiber
has an opposite orientation to its tangent rod. Those events can only be attributed to a mechanism allowing
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the fibers to switch direction using their flexibility, and this mechanism we call a super-buckling event. We
will explore in the next section the statistics of those events more in details.

For now, let us comment slightly further on the statistics of the misalignments of the fibers, by defining
the probability P(θ > θc) that the tangent vector exceeds a prescribed threshold θc. Fig. 4.14 shows, that
similar to what was previously observed for the buckling statistics, an Arrhenius law appears, that is

P(θ > θc) ∝ exp(−F ?
c /F ). (4.35)

Again the flexibility F plays the role of a temperature but this time, we point out that the law is NOT
anomalous. This means that the misalignment process can probably be modeled as a standard Poisson process,
and seems therefore blind to the intermittent correlations of the gradient statistics. This is a surprising
observation, that we do not fully explain at this point. This means that the Lagrangian statistics of the rotation
rate are very different than that of γ̇−.
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Figure 4.14: Left panel: Probability density functions of the tangent angle θ, for three values of the non- dimensional
flexibility. Right panel: Arrhenius law for probability that the tangent angle exceeds the threshold θc as a function of the
non-dimensional flexibility F . The fit (dashed line) show the behavior ∝ exp(−F ?

c /F ), with F ?
c a coefficient measured

empirically.

4.3.4.2 Super Buckling instability

A super-buckling event is defined as a switch in the fiber direction, measured by the tangent angle exceeding
π/2, obtained through a strong compression by the flow. One can understand this mechanism as follows:
When γ̇ becomes sufficiently strong and negative the fiber is completely buckled and its relaxation then occurs
in the opposite direction. Fig. 4.15 shows this behavior, by monitoring the cosine of tangent angle. When
cos θ = 1, the fiber is fully stretched and aligned with the flow; for values between 0 < cos θ < 1 the fiber is
buckled but is still aligned with the direction of the tangent rod p; when cos θ < 0, the fiber is misaligned,
and this signals a super-buckling event.
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Figure 4.15: Time evolution of the cosine of the tangent angle cos θ computed along a single trajectory, using the non-
dimensional flexibility F = 1.6×105. The three small boxes show the instantaneous configurations of the fiber and of the
tangent rod. The colormap allows to identify the two ends of the objects: from blue for the initial points to red for the end
points along the fibers and rods.

Obviously, the super-buckling events are extremely rare. To give an estimate of their probability of
occurence, we show in the left panel of Fig. 4.16 the super-buckling probability, measured as:

P	 =
# trajectories for which cos θ < 0 anytime between 0 and t

# trajectories
. (4.36)

One observes that P	(t) grows linearly in time. This means that the rate

λ	(F ) = P	/t (4.37)

measures the number of super-buckling event per unit of time. It is a constant in time and depends on the
flexibility. The right panel of Fig. 4.16 measures this rate in units of τη. The first observation is that the rate is
very low! For example, for the fibers with the highest flexibility, the chances are less than 0.01% that they will
experience a super-buckling event during an interval of time τη. The second observation, is that this kinetic
again follows an Arrhenius law. Similar to the law observed for the misalignments, it is not anomalous. This
means again, that while very rare, the super-buckling events can be described stochastically in terms of a
standard activated process. The mechanisms that conspire into producing such super-buckling events are still
not totally clear, but seems to be the result of a strong misalignement with the vorticity direction of the flow,
combined with a strong compression by the flow.
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Figure 4.16: Left panel: Super buckling rate λ	 as a function of the time for various values of the flexibility. Right panel:
Super buckling time as a function of the flexibility F .

To conclude this section, let us here emphasize that the super-buckling mechanism is very different
from the tumbling of rigid rods. From a dynamical point of view, this is confirmed by looking at the values
taken by the end-to-end length R, when conditioned on the tumbling rate

φ̇ =

∥∥∥∥∥dp
dt

∥∥∥∥∥ , (4.38)

measuring the angular velocity at which the tangent rods rotate.

Fig. 4.17 shows the behaviour of the conditional average of the end-to-end length for one specific
value of the flexibility. It is seen, that for small values of the tumbling rate the fibers are stretched. Conversely,
when the tumbling rate increases the fiber are in a buckled configuration. As previously mentioned, the rods
rotate with an angular velocity given by the vorticity of the flow. High values of the tumbling rate therefore
indicate that the fibers inside a high vorticity region, where the fluid is highly fluctuating, and where gradients
may conspire to bend the fiber.
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Figure 4.17: End-to-end length conditioned on the tumbling rate of the tangent rod p.
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4.4 Perspectives and ongoing work
Remarks. We have described in details the dynamics of small fibers passively transported by a turbulent
flow. We found that the dynamics of such fibers are determined by local turbulent fluctuations. Our most
salient observation is that the coupling between the fibers and turbulence can be phenomenologically modeled
in terms of various activation processes. This is the case for the buckling instability, where the buckling
rate ressembles an anomalous Arrhenius law. This is also the case for the statistics of the misalignments,
described through the tangent angle, and the super-buckling rates. The common feature of those laws is the
role played by the flexibility of the fibers, which is akin to that of a temperature in chemical kinetics. The
origin of the anomalous Arrhenius law featuring a stretched exponential behavior is to our understanding
related to the long-time correlations of the compressive shear rate, and more generally to the Lagrangian
intermittency of the shear rate. While unexplored in the present thesis, we believe that our work paves the
way for stochastic modelling of the buckling instability in terms of non-homogeneous Poisson processes, and
or activated processes driven by non-Brownian noise.

For the sake of simplicity, we have focused on one of the simplest framework of fiber-fluid interactions,
namely the local slender body theory. As exposed in details in this chapter, this approach relies on a series of
approximations, whose validity could be put into question, were we to extend our description beyond the case
of small massless inextensible fibers. In order to study influence of flexibility on preferential sampling of
fibers, one may for example wish to include inertial response. In principle, and apart from potential issue with
numerical timestepping, this would not require too much modeling effort: it would suffice to simply relax the
over-damped approximation. In another line of research with obvious range of applications, one could wish
to study the properties of long fibers coupled with turbulence. In that case, several approximations might
break down including the relevance of the Stokes equations to provide a handful SBT approach. Besides,
the use of the local approximation might become questionable if the fibers are allowed to become severely
entangled.

Ongoing work. To explore the interaction between large flexible fibers and walls, we study fibers into
a turbulent channel flow configuration. Two snapshots of the fiber distribution with different lengths are
shown in Fig. 4.18. At a qualitative level, one observes that short rigid fibers remain very straight, while long
flexible fibers bend patter intricate ways. Close to the wall, fibers tend to align with the mean flow close, and
long fiber being moreover stretched when they penetrate the viscous layer. In the bulk, short fibers orientate
randomly while long fibers seem to weakly display a weak preferential alignment with the mean flow.

Figure 4.18: Instantaneous distributions of fibers with length `+ = 30 (left) and `+ = 270 (right). The coloured planes
shows the streamwise component of the fluid velocity in the planes x = Lx and z = 0. The fluid flows from left to right.

Preliminary results show that fibers drift away from the boundaries and preferentially concentrate
in the bulk of the flow. The underlying mechanisms involve strong deformations of the fibers when they
are located rather close to the wall, at a distance comparable or smaller than their lengths. During such
events, the fibers effectively bounce away from the boundaries and migrate toward the bulk of the flow. As a
consequence of this concentration of fibers in the flow bulk, we moreover find that fibers are more efficiently
transported by the flow. They indeed spend more times in regions where the mean velocity is larger, leading
to higher fluxes than those of the fluid. A fine understanding on the mechanisms at play relating the migration
statistics to the rheology of the fibers is still elusive, and in particular when one studies fibers, whose lengths
exceed the channel width. Finally, one could consider more realistic scenarios to more faithfully account
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for the interactions between the fibers and the wall, including physical effects such as lubrication forces and
boundary attachment. A longer-term perspective relates to modeling intra-fiber or fiber-fiber interactions.
Experiments show that fibers can knot and form entangled aggregates, suggesting somes effects in their
transport properties. The stastical analysis of the topologies of such intricate fibers could probably prove a
fruitful and open field of study.

In addition, to explore the relevance of the local SBT beyond the description of small fibers, one could
rely on 2D turbulent flows, hereby allowing for some light systematic studies comparing the skills of the local
SBT to reproduce the statistics of specific mechanical models of fibers, such as the elastic chains studied
by Picardo et al. (2018). To illustrate this possibility, we reproduced the results of Picardo et al. (2018) using
a 2D local slender body theory 9, and numerical simulation of a 2D turbulent flow of 2562 collocation points
within a periodic box. Like the elastic chains used in Picardo et al. (2018), our fibers are inertialess and
passively transported by the flow and with a fiber length of the order of the inertial range. Fig. 4.19 shows that
at a qualitative level the local slender body description reproduces the main physical observation of Picardo
et al. (2018): fibers buckle within the vortex zones and stretch outside. The essential differences between our
continuous model and the elastic chains is the presence of the inextensibility constraint, and the fact the SBT
relies on a small deformation hypothesis.
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Figure 4.19: Snapshots of fibers immersed in a two-dimensional turbulent flow. Fibers have an elasticity of F = 5000
and a length of ` f iber = 1.5 equal to one quarter of the domain edge.

While further investigations of quantitative mathematical models of fibers coupled with turbulence is
a promising field of possibilities, we here will follow our journey with the local SBT, in order to characterize
one of the dramatic consequence of fibers being flexible in a highly fluctuating environment: If brittle, they
can break! The characterization of fragmentation is the focus of our next chapter.

9Naturally the local SBT has to be slightly modified in 2D, because the Stokes paradox prevents even small passive fibers not to alter
the background flow, when relying on the Stokes equation for the fluid-fiber interaction. To fix this issue, one needs to replace the 2D
Stokeslests by a so-called 2D Oseenlets, solving the singular Oseen equation

∇p − ν∇2u + u0 · ∇u = f0δ(x) and ∇ · u = 0,

with boundary condition u(x) = 0 for ||x|| → ∞.
(4.39)
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4.5 Reproduction of the paper:
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We here reproduce the paper “Stretching and Buckling of Small Elastic Fibers in Turbulence” published in
Physical review letters, that was co-authored with Jérémie Bec and Christophe Henry.
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Small flexible fibers in a turbulent flow are found to be as straight as stiff rods most of the time. This is
due to the cooperative action of flexural rigidity and fluid stretching. However, fibers might bend and
buckle when they tumble and experience a strong enough local compression. Such events are similar to an
activation process, where the role of temperature is played by the inverse of Young’s modulus. Numerical
simulations show that buckling occurs very intermittently in time. This results from unexpected long-range
Lagrangian correlations of the turbulent shear.
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Elongated colloidal particles are essentially subject to three
forces: bending elasticity, thermal fluctuations, and viscous
dragwith the suspending flow.An important andwell-studied
case is that of infinitely flexible polymers for which only two
effects compete: coiling promoted by thermal noise and
stretching induced by fluid shear. Relaxation to equilibrium
is then fast enough to give grounds for adiabatic macroscopic
models, such as elastic dumbbells [1,2], often used to
investigate the rheology of polymer suspensions [3]. Much
less is known about when the thermal fluctuations are
negligible but bending elasticity becomes important. This
asymptotics is relevant to describe macroscopic particles,
such as cellulose fibers in the paper making industry [4], or
diatom phytoplankton colonies [5] that significantly partici-
pate in the CO2 oceanic pump [6]. In principle, without
molecular diffusion there is no coiling. Furthermore, bending
elasticity and flow stretching act concomitantly to straighten
the fiber, suggesting an unsophisticated stiff rod dynamics.
However, most natural or industrial flows are turbulent. They
display violent and intermittent fluctuations of velocity
gradients, susceptible of destabilizing a straight configuration
by buckling the fiber [7].
We are interested in elongated, deformable, nondiffusive

particles passively transported by a turbulent flow. We aim at
quantifying two aspects: first, the extent to which their
dynamics can be approximated as that of rigid rods and,
second, the statistics of buckling. For that purpose, we focus
here on the simplest model, the local slender-body theory,
whichdescribes themotionof an inextensibleEuler-Bernoulli
beam immersed in a viscous fluid. In the limit of zero inertia,
the fiber velocity is obtained by equating the drag, the tension,
and the bending elasticity (see, e.g., Ref. [8]). The dynamics
of a fiber with cross section a and length l is then

∂tX ¼ uðX; tÞ þ c
8πρfν

D½∂sðT∂sXÞ − E∂4
sX�;

j∂sXj2 ¼ 1; with D ¼ I þ ∂sX∂sXT; ð1Þ

in the asymptotics c ¼ −½1þ 2 logða=lÞ� ≫ 1. Here,
Xðs; tÞ is the spatial position of the point indexed by the
arc length coordinate s ∈ ½−l=2;l=2�, u is the velocity
field of the fluid, ν its kinematic viscosity, ρf its mass
density, and E denotes the fiber’s Young modulus. The
tension Tðs; tÞ, which satisfies Tj�l=2 ¼ 0, is the Lagrange
multiplier associated to the fiber’s inextensibility con-
straint. Equation (1) is supplemented by the free-end
boundary conditions ∂2

sXj�l=2 ¼ 0 and ∂3
sXj�l=2 ¼ 0.

The considered fibers are much smaller than the smallest
active scale of the fluid velocity u. In turbulence, this means
l ≪ η, where η ¼ ν3=4=ε1=4 is the Kolmogorov dissipative
scale, ε ¼ νhk∇uk2i being the turbulent rate of kinetic
energy dissipation. In this limit, the particle motion
is to leading order that of a tracer and dX̄=dt ¼ uðX̄; tÞ,
where X̄ðtÞ denotes its center of gravity. The deformation
of the fiber solely depends on the local velocity gradient,
so that uðX; tÞ ≈ uðX̄; tÞ þ AðtÞðX − X̄Þ, where AijðtÞ ¼
∂juiðX̄; tÞ. The dynamics is then fully described by
two parameters: the fluid flow Reynolds number Re,
prescribed very large, and the nondimensional fiber flexi-
bility, defined as

F ¼ 8πρfνl4

cEτη
; ð2Þ

where τη ¼
ffiffiffiffiffiffiffi
ν=ε

p
is the Kolmogorov dissipative time and

quantifies typical values of the turbulent strain rate. The
parameter F can be understood as the ratio between the
timescale of the fiber’s elastic stiffness to that of the turbulent
velocity gradients. At small F , the fiber is very rigid and
always straight. On the contrary, for largeF it is very flexible
andmight bend. Clearly, if the fiber had inertia, the dynamics
would involve its material density and depend on an extra
parameter (e.g., the Stokes number). This would probably
affect bending properties.
In the straight configuration, the tangent vector is

constant along the fiber, i.e., ∂sX ¼ pðtÞ, and follows
Jeffery’s equation for straight ellipsoidal rods [9]:
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dp
dt

¼ Ap − ðpTApÞp: ð3Þ

This specific solution to Eq. (1), which is independent of s,
is stable when the fiber is sufficiently rigid. However, it
becomes unstable when increasing flexibility, or equiva-
lently for larger fluid strain rates. As shown and observed
experimentally in two-dimensional velocity fields, such as
linear shear [7,10,11] or extensional flows [12–14], this
instability is responsible for a buckling of the fiber. This
occurs when the elongated fiber tumbles [15,16] and
experiences a strong enough compression along its direc-
tion. This compression is measured by projecting the
velocity gradient along the rod directions, i.e., by the
stretching rate _γ ¼ pTAp. In turbulence, buckling thus
occurs when the instantaneous value of _γ becomes large
with a negative value (compression).
To substantiate this picture, we have performed direct

numerical simulations of three-dimensional homogeneous
isotropic turbulence. The flow is obtained by integrating the
incompressible Navier-Stokes equations using the LATU

spectral solver with 40963 collocation points and a force
that keeps kinetic energy constant in the two first Fourier
shells [17]. Once a statistically steady state is reached with a
Taylor microscale Reynolds number, Reλ ≈ 730, the flow is
seeded with several millions of tracers, along which the full
velocity gradient is stored with a period ≈τη=4 during four
large-eddy turnover times (up to t ≃ 734τη). The local
slender-body equation for fibers, Eq. (1), is then integrated
a posteriori along a subset of 4000 tracer trajectories
uniformly distributed in the domain, and eight different
values of the flexibility. We use the semi-implicit, finite-
difference scheme of Ref. [9], with the inextensibility
constraint enforced by penalization. N ¼ 201 grid points
are used along the fiber arc length, with a time step
5 × 10−4τη. We use linear interpolation in time to access
the velocity gradient at a higher frequency than the output
from the fluid simulation.
Numerics confirm that fibers much smaller than the

Kolmogorov scale are almost always straight. This can be
measured from the end-to-end length RðtÞ ¼ jXðl=2; tÞ−
Xð−l=2; tÞj. When R ¼ l, the fiber has a rod shape.
Buckling occurs when R < l. The upper panel of Fig. 1
shows the time evolution of the end-to-end length along a
single trajectory for various nondimensional flexibilities F .
Clearly, bending is sparse and intermittent. Buckling events
are separated by long periods during which R≡ l, up to
numerical precision. For instance, one observes j1 −
RðtÞ=lj < 10−13 in the time interval 100 < t=τη < 180. In
the lower panel ofFig. 1,wehave shown the timeevolutionof
the stretching rate _γ along the same Lagrangian trajectory. As
expected, buckling events are associatedwith strong negative
fluctuations of _γ. Note that, because p is preferentially
alignedwith the fluid stretching [18], the rate _γ has a positive
mean h_γi ≈ 0.11=τη. Its standard deviation is ≈0.2=τη.

To get more quantitative insight, we define buckling
events as times when RðtÞ=l is below a prescribed thresh-
old (we have used 0.999). Figure 2 shows the probability of
buckling as a function of the flexibility F. This quantity,
denoted Φ, is defined as the fraction of time spent by the
end-to-end length below this threshold. Conversely to

FIG. 1. Top: Time evolution of the end-to-end length RðtÞ for a
specific turbulent tracer trajectory and three different values of the
nondimensional flexibility F, as labeled. Bottom: Evolution of
the instantaneous stretching rate _γ along the same trajectory. The
solid lines correspond to τη _γ ¼ 0, −0.13, −0.26, and −0.52. Note
that time is rescaled by the Kolmogorov timescale τη. In these
units, the large-eddy turnover time is τL ≈ 190τη.

FIG. 2. Probability of buckling Φ as a function of F . The
squares come from numerical simulations and were calculated as
the fraction of time during which RðtÞ=l < 0.999. Error bars
show the standard deviation of these estimates, obtained when
assuming that buckling events are uncorrelated. The bold line is
the probability that the stretching rate _γ is less than −F ⋆=ðτηF Þ
with F⋆ ¼ 2.1 × 104. The corresponding cumulative distribution
function (CDF) is shown in the inset, together with a fit (dashed
line) of the form ∝ exp½−Aðτηj_γjÞ1=2�, where A ¼ 1.69. The same
approximation is used in the main panel to fit Φ (dashed line).
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simple steady shear flows (see, e.g., Ref. [8]), and differ-
ently from what is observed for long fibers in turbulence
[19,20], here we find that there is no critical value of the
flexibility above which buckling occurs. Fibers bending is
similar to an activated process with Φ ∝ expð−C=F αÞ and
where the flexibility F plays a role resembling that of
temperature in chemical reactions. Indeed, the fiber is
found to buckle when its instantaneous flexibilityF locðtÞ ¼
τηj_γðtÞjF is larger than a critical value F ⋆, with _γðtÞ < 0.
This leads to

Φ ¼ Pr ðτη _γ < −F ⋆=F Þ: ð4Þ

As can be seen in Fig. 2, the cumulative probability of the
stretching rate can indeed be used to reproduce the numerical
measurements of Φ by choosing F ⋆ ¼ 2.1 × 104. This
value, which just corresponds to a fit, is much larger than
those observed in time-independent shear flows [11] where
buckling occurs for F ≳ 300. A first reason comes from
using the Kolmogorov dissipative timescale when defining
F . This is a natural but arbitrary choice in turbulence.
However, τη is significantly smaller than typical values of
_γ−1, so that effective flexibilities could be smaller than F .
This is similar to choosing τη rather than the Lyapunov
exponent to define the Weissenberg number for the coil-
stretch transition of dumbbells in turbulent flow [21].
Another explanation for a large F ⋆ could be the intricate
relation in turbulence between the amplitude of velocity
gradients and their dynamical timescales, which implies in
principle that the stronger _γ is, the shorter the lifetime of the
associated velocity gradient.
Fibers with a small flexibility buckle only when the

instantaneous stretching rate is sufficiently violent.
Moreover, it is known that at large Reynolds numbers
[22], the probability distribution of velocity gradients has
stretched-exponential tails with exponent≈1=2. This behav-
ior is also present in the cumulative probability of _γ, as seen in
the inset of Fig. 2. This leads to the prediction that

Φ ∝ e−AðF ⋆=F Þ1=2 for F ≪ F ⋆: ð5Þ

This asymptotic behavior is shown as a dashed line in the
main panel of Fig. 2. It gives a rather good fit of the data, up to
F ≈ 1.6 × 105. At larger values, this activationlike asymp-
totics and relation to the tail of the distribution is no longer
valid. At very small values (or equivalently large negative
_γ’s), one observes tiny deviations from the stretched expo-
nential, certainly resulting from numerical errors overpre-
dicting extreme gradients [23].
The relevance to buckling of an instantaneous flexibility

larger than F ⋆ can be seen in Fig. 1. The dashed lines in the
bottom panel are the critical values τη _γ ¼ −F ⋆=F asso-
ciated to the three flexibilities of the top panel. We indeed
observe that buckling occurs when the instantaneous
stretching rate underpasses these values. In some cases

(e.g., for times between 400 and 500τη), it seems that the
fiber is straight, even if _γ is below the threshold. Still,
buckling occurs but with an amplitude so small that it
cannot be detected from the top panel. This threshold
therefore provides information on the occurrence of buck-
ling, but not on the strength of the associated bending.
Another qualitative assessment that can be drawn from

Fig. 1 is that large excursions of _γ are not isolated events but
form clumps. This is a manifestation of the Lagrangian
intermittency of velocity gradients. Tracers might indeed be
trapped for long times in excited regions of the flow, leading
to fluctuations correlated over much longer times than τη.
This can be quantified from the autocorrelation ρðtÞ of the
negative part _γ− ¼ maxð−_γ; 0Þ of the stretching rate, which
is represented in the inset of Fig. 3. The corresponding
integral correlation time is

R
ρðtÞdt ≈ 2.8τη. This can be

explained by the abrupt decrease of the autocorrelation at
times of the order of the Kolmogorov timescale. This
behavior is essentially a kinematic effect due to fast rotations.
Remember that _γ is obtained by projecting the velocity shear
on the directionp of a rigid rod. This direction rotates with an
angular speed given by the vorticity ω ¼ j∇ × uj, so that _γ
can alternate from expansion to compression, on timescales
of the order ofω−1 ∼ τη. Surprisingly, at longer times t≳ 4τη,
the autocorrelation of _γ− changes regime and decreasesmuch
slower than an exponential. This contradicts the classical
phenomenological vision that velocity gradients are purely a
small-scale quantity with correlations spanning only the
dissipative scales. For more than a decade in t within the

FIG. 3. Probability density functions [PDF (solid lines)] of
the time T between successive buckling events, normalized
to its average hTi ≈ 52τη for F ¼ 1.6 × 105, and hTi ≈ 36τη for
F ¼ 3.2 × 105. The dotted line represents the exponential distri-
bution. The dashed line is aWeibull distribution, Eq. (6),with shape
β ¼ 0.7 and scale parameter λ ¼ 1. Inset: Autocorrelation ρðtÞ ¼
cov(_γ−ðtÞ; _γ−ð0Þ)=Varð_γ−Þ of the negative part of the stretching
rate. The dotted line stands for expð−t=τηÞ. The vertical dashed line
indicates the large-eddy turnover time t ¼ τL. The solid line shows
a slope −0.7.
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inertial range, we indeed find a power-law behavior
ρðtÞ ∝ t−β, with β ≈ 0.7� 0.1. To our knowledge, this is
the first time such a long-range behavior is observed for
turbulent Lagrangian correlations.
These intricate correlations have important conse-

quences on the incidence of buckling. Memory effects
are present, as the fiber is likely to bend several times when
in a clump of violent, high-frequency fluctuations of _γ.
Consequently, the probability distribution pðTÞ of the time
T between successive buckling events is not exponential.
This is clear from the main panel of Fig. 3, where this
distribution is shown for F ¼ 1.6 × 105 and 3.2 × 105.
One observes deviations from the exponential distribution
(dotted line). They relate to the two regimes discussed
above for the time correlations of _γ−. First, the distribution
of interbuckling times is maximal for T of the order of τη.
This corresponds to rapid oscillations of the sign of _γ. The
fiber experiences several tumblings in an almost-constant
velocity gradient and is alternatively compressed and
pulled out by the flow due to fast rotations. This leads
to a rapid succession of bucklings and straightenings.
Second, strong deviations to the exponential distribution
also occur for interbuckling times T in the inertial range.
As seen in Fig. 3, the distribution of interbuckling times in
the intermediate range 0.5≲ T=hTi≲ 5 is well approxi-
mated by a Weibull distribution with shape β and scale
parameter λ:

pðTÞ ≈ βTβ−1

λβ
e−ðT=λÞβ : ð6Þ

This decade exactly matches the time lags for which _γ
displays long-range correlations, that is, ρðtÞ ∼ t−β. The
return statistics of processes with power-law correlations
is indeed expected to be well approximated by a Weibull
distribution [24]. Longer times correspond to t≳ τL, for
which pðTÞ is expected to ultimately approach an exponen-
tial tail.
To characterize further buckling events and in particular

their geometry, we show in Fig. 4 the joint probability
density of the end-to-end length R and of the fiber’s mean
curvature, κ̄ ¼ ð1=lÞ R j∂2

sXjds. The distribution is sup-
ported in a thin strip aligned with κ̄ ∝ ð1 − R=lÞ1=2.
Bucklings correspond to loops in this plane. Trajectories
typically start such excursions with a larger curvature
(upper part of the strip) than the one they have when
relaxing back to a straight configuration (lower part). The
orange curve corresponds to the first buckling event of the
trajectory shown in Fig. 1. The curvature increases con-
comitantly to a decrease of the end-to-end length. Right
before reaching a maximal bending, the fiber displays
several coils (top left inset). This configuration depends on
the most unstable mode excited with the current value of
the instantaneous flexibility F loc. It is indeed known that
buckling fibers in steady shear flows can experience several

bifurcations, depending on their elasticity [7]. Once the
fiber has again aligned with _γ > 0, that is, a couple of τη ’s
later, these coils unfold (bottom right inset), the curvature
decreases, and the fiber relaxes back to a straight configu-
ration. This specific event has been chosen for its simplicity
and representativity. Still, it experiences a nontrivial epi-
sode at 1 − R ≈ 10−4, during which the fiber configuration
seems frozen. This event corresponds to the plateau
observed in the top of Fig. 1 for 50τη < t < ≈80τη, right
after the maximum of buckling. At these instants of time, _γ
is weakly oscillating around zero and the fiber is neither
compressed nor stretched by the flow.
To conclude, recall that we have focused on passively

transported fibers. In several applications, they actually
have an important feedback on the flow and might even
reduce turbulent drag. We found here that the dynamics of
flexible fibers strongly depends on the shear strength: In
calm regions, they just behave as stiff rods; in violent,
intermittent regions, they can buckle, providing an effective
transfer of kinetic energy toward bending elasticity. Such
nonuniform, shear-dependent effects likely lead to intricate
flow modifications, where the presence of small fibers
affects not only the amplitude of turbulent fluctuations but
also their very nature. Such complex non-Newtonian
effects undoubtedly lead to novel mechanisms of turbu-
lence modulation.
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FIG. 4. Contour levels of the joint distribution of the end-to-end
length R and of the mean curvature κ̄ for F ¼ 1.6 × 105. The
vertical dashed line shows the threshold R=l ¼ 0.999. An
excursion of the same trajectory as Fig. 1 is shown for 43 <
t=τη < 77 (orange). Also, two instantaneous configurations of the
fiber are represented for t ¼ 43τη (top left inset) and t ¼ 45τη
(bottom right inset).
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The rheological response of suspended objects induced by the violent intermittent fluctuations of
turbulent fluid flows may have crucial consequences in physical world phenomena. This is particularly true if
one has in mind the fate of genuine physical fibers: Being brittle, they are susceptible to break when they
undergo strong stress. It is thus extremely natural to include fragmentation processes in our modeling of small
fibers, and study how the turbulent fluctuations trigger and shape the fragmentation statistics as a function
of time. The fundamental questions are simple: How many fragments? What are their size? Answering
those questions is the scope of the present chapter, where we address both the microscopic and the statistical
modeling of such fragmentation process.

The modeling of fragmentation processes is key to understanding natural and industrial phenom-
ena (Beysens et al., 1995; Bertoin, 2006). Salient examples include break-up of DNA chains (Nagata, 2000;
Yan et al., 2006; Cristiano et al., 2019); fragmentation of meteors in space (Hüfner and Mukhopadhyay, 1986;
Keil et al., 1994; Khrennikov et al., 2020) and study of the outcome of explosions in a military context (Mott,
2006; Gold and Baker, 2008). We note that this latter field of application, following the work of Griffith
and Mott (Griffith, 1943; Mott, 1947) is at the origin of a systematic approach to fragmentation, combining
statistical studies and microphysics modeling (Horn and Merrill, 1984). The statistical description can rely on
various mathematical frameworks, from mean field population models based on ordinary differential equations
and stochastic processes to reaction diffusion system based on partial differential equations (Bortolussi and
Gast, 2016). Quite generally, such models require information on two quantities: the fragmentation rate
(i.e. the frequency of the breakup events) and a modeling of the outcome of one fragmentation event, for
instance in terms of number of fragments or in terms of the distribution of sizes. Here, we will show how an
appropriate stochastic Lagrangian population model can be used in combination to microscopic simulations
to provide faithful estimates on the statistics of the fragments.
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The chapter is organized as follows. We first detail our numerical simulations of the mechanisms
of fragmentation for small fibers involved in a turbulent flow. Second, we propose a statistical framework,
that upon calibration using our numerical experiments, can be used to predict the statistics of small-fiber
fragmentation within turbulence. We finally discuss some of the shortcomings of our modeling approach and
suggest perspectives for future work.

Our exposition is a spin-off to the paper “Dynamics and fragmentation of small inextensible fibers in
turbulence” published in Philosophical transactions A, that was co-authored with Jérémie Bec and Christophe
Henry. The paper is reproduced at the end of the chapter.

5.1 How to model fragmentation in numerical simulations?

5.1.1 The physics of brittle materials
To study fragmentation from our direct numerical simulations (DNS), we model the fibers as a brittle material.
This means that the regime of linear elasticity remains valid all the way until a certain critical fracturation
point is reached, at which the material breaks. This constitutes a simplifying assumption, as real-world
materials typically undergo a regime of plastic deformation before they actually break. When this plastic
regime extends way beyond the elastic regime, the material is called ductile. When this plastic regime is non
or close to non-existant, the material is called fragile or brittle. In practice, the brittle approximation allows
to rely on the SBT equations all the way until fracturation. This means that fracturation simply consists of
reaching an imposed limit of validity for the constitutive equation of state of the fiber; in other words all the
way until fracture, the fiber follows a Hooke’s law, tying the topology of the fiber to the internal efforts and
internal energy (see Fig.5.1).

Figure 5.1: Stress σ as a function of the strain ε for two different materials, either brittle (in blue) or ductile (in red),
together with their fracture point.

In terms of energy, this means that the fiber cannot reach an infinite elastic energy and will break
when the latter reaches a given critical value E?b . In particular, when the fibers buckle, the increase of the
local curvature leads to the increase of the local bending energy dEb(s) = (E/2) κ(s)2ds, where E is the
bending modulus defined in the previous chapter. Hence, the fiber will break when its curvature becomes too
high. Such a mechanism is referred to as a flexural failure (see the left panel of Fig. 5.2) and provides the
mechanism for fragmentation when the fiber undergoes strong compression stress.

In the case of an extensional stress, our assumptions that the fibers are inextensible imply that, strictly
speaking, the fibers are not elastic. In fact, what inextensibility really means is that physically, the fibers are
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characterized by a very large Young modulus Y = E/I. Mathematically, our inextensible fibers can be seen
as the formal limit obtained as Y = E/I → ∞, with E = O(1), implying I → 0 where I is cross-sectional
moment of inertia (see previous chapter). This means that the extensional potential energy of an inextensible
fiber is formally 0. In other words, we need an infinite stress to have a small strain. In the case of a large,
but finite Y , the elastic energy associated to local stretching in the axial direction is the extensional energy
dET (s) = T (s)2/(2Y)ds (Landau and Lifshitz, 1959) in terms of the local tension T . Hence, a fragile fiber will
break when the extensional energy reaches a prescribed threshold, or equivalently when the tension becomes
locally too high (see the right panel of Fig. 5.2). In order to implement a mechanism allowing failure due to
strong stretching in the inextensible case, it is therefore possible to impose a threshold on the local tension 10.
We refer to such mechanism as a tensile failure.

Figure 5.2: Illustration of the relation between the local bending energy dEb(s) and the curvature κ in the left side and
the local extensional energy dET (s) and the tension T in the right side. The respective critical values κ? and T? are given
by the physical properties of the material.

To summarize,

• Fibers can break through tensile failure, when undergoing stretching efforts. The internal tension is
then likely to become very high, leading to fragmentation if it supersedes a prescribed threshold that
depends on its material properties.

• Another way to break fibers is to compress them, in order to trigger a buckling instability and provoke
a flexural failure. In that case, the fibers break because the local curvature becomes too high. In other
words, fibers cannot exceed a prescribed curvature without breaking.

Let us now describe practical details on the numerical implementation of those two fragmentation
processes in our DNS.

5.1.2 Numerical implementation
With those two mechanisms at hand, we can now incorporate fragmentation processes in our numerics,
depending on the two threshold parameters κ? and T?. Following the tracer trajectories along which the SBT
are integrated, fragmentation processes are triggered whenever either the local tension or the local curvature
reach the threshold values. In that case the fiber breaks into two pieces.

For simplicity, we make the three following modeling assumptions:

i the threshold parameters κ? and T? can be chosen independently from each other;

ii the breaking is instantaneous, e.g. faster than any timescale in the problem;

iii the daugther fragments follow the same Lagrangian trajectory as their parents. This means that a given
fiber will generate a full dynasty of fragments, which do not feel any sort of relative dispersion. This
assumption has the chief advantage to drastically simplify the numerics! However, it will produce

10which is not vanishing, contrarily to the extensional energy!
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a strong statistical correlation between the fragment sizes that needs to be taken into account in the
statistical description.

5.2 Outcome of turbulent fluctuations
Let us now describe in more details the outcome of stretching and buckling events triggering the two kinds of
failures in terms of fragmentation statistics.

5.2.1 Stretching by the flow: tensural failure
Large tensions are reached when the fiber experiences a strong stretching along its main axis and is thus
generally in a fully straight state. In this case the tension is given by

T (s, t) = −
µ

4
γ̇(t)

(
s2 −

`2

4

)
, (5.1)

where µ = 8π ν/b (see previous chapter for more details). We observe that Eq. (5.1) follows a parabolic shape
with the arc-length coordinate s and its maximum is

Tmax =
µ γ̇ `2

16
(5.2)

reached at the middle of the fiber (see the bottom panel of Fig. 5.3).

Figure 5.3: Top panel: Straight fiber with a flexibility F = 1.6×105. The color rendering shows the fiber curvature.
Bottom panel: tension as a function of the arc-length at the same instant of time

As a consequence, a tensile failure occurs when the shear rate reaches the critical value

γ̇?T (`) = 16 T?/(µ`2),

in which case the fiber breaks into two daughter fragments of size `/2. Note that the critical value depends
on the fiber length ` and in its physical properties by T?. This implies that a stretching event will not
systematically generate only two pieces: It may in fact generate a sequence of tensile failures for the
fragments. The final number and sizes of the pieces at the end of the event depends on the maximal positive
value γ̇m reached by the shear rate.

Specifically,
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• If γ̇m < γ̇?T (`), then the fiber does not break. It can be considered as one daughter fragment of size `.

• If γ̇?T (`) ≤ γ̇m < γ̇?T (`/2), the fiber breaks into two daughter fragments of equal sizes `/2.

• If γ̇?T (`/2) ≤ γ̇m < γ̇?T (`/4), the fiber breaks into two daughter fragments of equal sizes `/2, which in
turn break into two grand-daughter fragments of equal sizes `/4. The final number of pieces is 4.

• If γ̇?T (`/4) ≤ γ̇m < γ̇?T (`/8), the fiber breaks into two daughter fragments of equal sizes `/2, which
in turn break into two grand-daughter fragments of equal sizes `/4, which in turn break into two
grand-grand-daughter fragments of equal sizes `/8. The final number of pieces is 8.

• If γ̇?T (`/2n) ≤ γ̇m < γ̇?T (`/2n+1), the fiber breaks into two daughter fragments [...] which in turn break
into two grand-[...]-grand-daughter fragments of equal sizes `/2n+1. The final number of pieces is 2n+1.

More generally, the number of successive failures is:

nT =

[
1
2

log2
γ̇m

γ̇?(`)

]
+ 1,

and the total number of pieces is: 2nT provided nT ≥ 0. Fig. 5.4 illustrates this scenario.

Figure 5.4: Evolution of the positive values of the shear rate as a function of the time t and the illustration of the different
levels given a critical value of tensile failure. Each time that fibers supersede a red dashed-lines they breaks into two more
pieces illustrates in small boxes.

We observe that if tensile failure is the only mechanism involved in the fragmentation (e.g. , not
considering flexural failure) then the number of pieces present at time t along a Lagrangian trajectory is fully
specified by the Lagrangian statistics of max[0,t](γ̇). Specifically,

P(# = 2n, t) = P(max
[0,t]

(γ̇) ∈ [22n γ̇?(`) ; 22n+2 γ̇?(`)]). (5.3)

5.2.2 Compressing by the flow: flexural failure
Now we focus on the flexural failure mechanism, which we implement in our numerics by imposing a critical
value for the curvature κ?. Fig. 5.5 shows this mechanism at play during one of the buckling events. We
observe not one but a sequence of flexural failures, resulting in the formation of many fragments at the end of
the event. The scenario goes as follows: When it achieves a local curvature κ? for the first time, the fiber
breaks in two pieces. Unlike the parabolic tension profile which precedes tensural failure, the curvature profile
when the fiber first breaks by flexural failure is wavy, characterized by a mode with a certain wavenumber
kb∗ and modulated by an apparently Gaussian enveloppe. Along the fiber, the curvature therefore displays a
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number nb ∼ 2kb∗ of local maxima, likely to be very close to the critical threshold. After the initial failure,
the fragments are still compressed by the flow, and this may bring the local peaks of the curvature to reach the
threshold κ?. This heuristic view explains why single buckling event trigger a sequence of flexural failures
and may produce a non-trivial number of fragments.
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Figure 5.5: Top panel: Buckled fiber with a flexibility F = 1.6×105. The color rendering shows the fiber curvature.
Bottom left panel: tension as a function of the arc-length at the same instant of time. Left bottom panel: Evolution of a
fiber during fragmentation. The curvature of the growing mode is displayed at the time of the first breakup, as a function
of the arc-length s. Together with the time evolution of the size distribution (time growing from top to down); Each
horizontal plain line is a break-up event and segments correspond to fiber fragments. Right panel: Three instantaneous
configurations of the fragments at time t1, t2 and t3. Colors code the values of curvature (from zero in dark blue to κ? in
yellow). Note that in this pseudo 3D representation, the arc-length s runs from right to left.

It turns out that quantitative estimates on the number of fragments can be obtained from the linear
stability analysis of the local SBT equation, by considering the outcome of a slightly perturbed rod. The full
calculation is not immediate and the details are discussed in 5.5. The outcome of the analysis is the fact that
the most unstable mode can be characterized as a function of the negative values of the instantaneous shear
rate γ̇− ∝ Floc. The mode has a profile that matches the observation of the DNS; it is characterized by an
oscillating function with a wavenumber kb and a Gaussian envelope with a spatial variance `2/2cb, such that:

kb '
√
Floc/(2π

√
32) and cb '

√
Floc/8. (5.4)

The wavenumber provides an estimate for the expected number of pieces as:

nb ' 2kb ∝
[
`2

√
−γ̇

]
.

Because of the Gaussian modulation, this number most probably over-estimates the total number of fragments.
Conversely to tensile failure, the position s where the curvature is maximal is not necessarily constant in time,
and depends on the growth stage of the most unstable mode.
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5.3 Stochastic approach to turbulent fragmentation
In our turbulent environment, fibers are exposed to fluctuating events that exercise strong external constraints
on the fiber, and are likely to trigger a fragmentation process. The scope of the present section is to analyze
the effects of such fluctuations on the statistics of fragments. To that end, we sketch a general framework
based on probabilities defined at the level of Lagrangian trajectories. We then illustrate the applicability of
this approach, by focusing on the fragmentation by buckling events.

5.3.1 General framework: Lagrangian population model
We here describe a statistical approach to model the fragmentation process, which can be seen as a stochastic
Lagrangian population model, and can be described in full generality using the theory of renewal pro-
cesses (Hughes, 1995, Chap. 5) (Karlin, 2014, Chap. 3) (Shlesinger and Hughes, 1981; Shlesinger, 1974;
Pyke, 1961). The idea is to estimate the statistics of the “dynasty” of fragments generated by an initial fiber
of size `. In our numerics, we assume that every daughter fragments follow the same Lagrangian trajectory,
prescribed by the Lagrangian trajectory of a reference tracer. This tracer can be thought of as the center of
mass of the dynasty; the statistics of the fragments evolve through time, as the center of mass of the dynasty
encounters dangerous events leading to fiber break-ups.

Our approach is based on a discrete description, using master equations to model the evolution of
the fiber fragmentation. In full generality, the evolution of the population of fragments along a Lagrangian
trajectory can be described statistically by the quantity:

Pt(N, {`k}k=1,..,N) = P(number of fragments = N

& ∀k ∈ [1; N] the kth fragment has size = `k

at time t).

(5.5)

This quantity is a very detailed fine-grained probability distribution in the sense that it provides the full
information on the statistics of the fragments. However it is cumbersome to manipulate, and it is also
cumbersome to compute from numerics. For this reason we turn our attention to the modeling of coarse-
grained quantities, such as Pt(N) and Pt(`), respectively describing the evolution of the number of fragments
and the evolution of the average fragment size. Such quantities give us relevant mean-field information about
the evolution of the fragmentation process, and can be studied more easily in terms of a stochastic dynamics.
For simplicity, we here further restrict our analysis to the evolution of the number of fragments given by the
quantity Pt(N).

Fig. 5.6 illustrates the general idea: the evolution of the fragmentation process is measured along a
prescribed Lagrangian trajectory, as well as its dynamics. During their lives, fibers experience dangerous
events that can trigger their fragmentation. Those dangerous events are either the strong compressive events
leading to buckling and flexural failure, or the strong stretching events leading to tensile failure. As described
in the previous section, actual breaking of the fibers require the events to be strong enough. In our turbulent
environment, such dangerous events are extremely short; they are characterized by a negative or positive
peak of the shear rate or an extremely time-localized incursion of the shear rate below or above threshold
values.

Because of the presence of non-trivial time correlations between the dangerous events, one cannot
in full generality rely on standard Poisson processes to describe the dynamics of the the resulting number
of fragments N. To account for those correlations, we therefore use a description in terms of more general
renewal process ((Hughes, 1995). The process will be fully determined by the rheological response of the
fiber according to the magnitude of the events and to their signs (negative for flexural failure and positive for
tensile failure).
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Figure 5.6: Illustration of a statistical framework describing the statistical evolution of the number of fragments Pt(N).
Top panel: the evolution of a “fiber dynasty ”along a Lagrangian trajectory, where the red stars represent the break-up
events, where the fibers break and the population increases. Bottom panel: time evolution of the shear rate along the
trajectory. The dangerous events are identified with incursions of the shear rate above (below) prescribed positive
(negative) thresholds, here represented by the red dashed-lines. The probabilities P(N|k) is the probability to have N
pieces given k dangerous events and is assumed to be independent of time. The transition probability χ(N′ → N) is the
probability that a dangerous event creates N pieces out of N′.

We model the dynamics of Pt(N) by introducing the joint probability

Pt(N, k) = P(number of fragments = N

& number of dangerous events = k

at time t
(5.6)

which represents the joint probability to find N pieces and k dangerous events at time t along the Lagrangian
trajectory of the dynasty. From the fundamental postulate of probability, this joint probability can be expressed
as

Pt(N) = Pt(N |k) ρt(k), (5.7)

in terms of the conditional probability Pt(N |k) that N fragments are found given that k dangerous
events at time t, and in terms of the probability ρt(k) to have exactly k dangerous events at time t. The
probability Pt(N |k), depends on the physical properties of the fiber, and we will here assume that it is
independent from time, e.g. Pt(N |k) = P(N |k). Physically, this models the property that fibers do not age with
time. The time correlations between the dangerous events are encoded in the quantities ρt(k).

We can now write the dynamics of Pt(N) in terms of the master equation:

Pt(N) =
∑

k

Pt(N, k) =
∑

k

P(N |k) ρt(k), (5.8)

The rheological response of the daughter fragments P(N |k) can be determined from the time-
independent recurrence relation

P(N |k) =
∑
N′

P(N′|k − 1)χ(N′ → N), (5.9)
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where P(N′|k − 1) is the probability to have N′ pieces given k − 1 dangerous events, and χ(N′ → N), is the
transition probability that a dangerous event creates N pieces out of N′. This probability is described by
the rheological response of the fibers to dangerous events and physical mechanisms at play in the breaking
process.

5.3.2 Stochastic modeling of fragmentation by flexural failure
To see how the framework applies, and understand the interplay between the turbulence statistics ρt(k) and
the rheology of the fibers χ(N′ → N), let us now focus on the stochastic modeling of the fragmentation of
fibers due to the flexural failure events only.

The master equation (5.8) for the evolution of the number of fragments Pt(N) then specifically
involves

• ρt(k), which represents the probability to have k buckling events between 0 and t,

• P(N|k), which is the probability to have N fragments out of k buckling events and depends on the
rheology.

Modeling of the rheology. The transition kernel χ determining P(N |k) can be partially obtained from the
considerations of the previous section, where we argued that the number of fragments is a non-linear function
of γ̇−, and the size `. This provides the estimate

χ(1→ N) = χ`(1→ N) =

∫
d γ̇ pb(γ̇) χ (1→ N|γ̇)

with χ(1→ N |γ̇) = δNnb and nb ∝
[
|γ̇−|1/2`2

]
,

(5.10)

where [a] is the floor of a, and pb denotes the probability density of the shear rate conditioned on the buckling
events.

Full modeling of the quantities χ(N → N′) requires additional assumptions on the rheology. Possible
models include the following:

1. Daughter fragments are too small to break again: a fiber can only break if its size is ` (see Fig. 5.7), in
that case

χ(N′ → N) = δN′N if N′ > 1.

2. Daughter fragments have all the same size at each step, and break collectively. In that case, one could
use the modeling

χ(N′ → N) = χ`/N′ (1→ N/N′) ∝ N′−2χ(1→ N/N′),

which relates the transition kernel χ(N′ → N) to the probability to creating N/N′ daughter fragments out
of an initial fiber of size `/N′. The second relation stems from 5.10. This fully prescribes the rheological
response of the daughter fragments.
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Figure 5.7: Illustration of a statistical framework describing the statistical evolution of the number of fragments Pt(N)
due to flexural failure. Top panel: the evolution of a “fiber dynasty ”along a Lagrangian trajectory. The red star represents
the break-up event, where the fiber breaks and the population increases. Bottom panel: time evolution of the negative
part of the shear rate along the trajectory γ̇−. The dangerous events are identified as buckling events characterized by
incursions of the shear rate below a prescribed negative thresholds, here represented by the red dashed-line. The parameter
T represents the inter-buckling time. The quantity P(N|k) is the probability to have N pieces given k dangerous events
and is assumed to be independent of time. The transition probability χ(N′ → N) is the probability that a dangerous event
creates N pieces out of N′.

Modeling of turbulent fluctuations. Turbulent fluctuations are modeled in terms of the probability ρt(k),
which in turn is fully determined by the waiting time statistics between two consecutive buckling events,
namely the “inter-buckling time” Ψ(T ) defined as

ρt(k) = ρ(k, t) =

∫ t

0
ρ(k − 1, t′)Ψ(t − t′)dt′

= Ψ ⊗ ρ(k − 1),

= Ψ⊗k ⊗ ρ(0).

(5.11)

where Ψ(T ) represents the distribution of inter-buckling times T (see Fig. 5.7). This probability has
been found in our precedent chapter 4 to be different from an exponential and rather follow the Weibull
distribution (see Appendix E)

Ψ(T ) ≈
βT β−1

λβ
e−(T/λ)β , (5.12)

with a mean value τ = 〈T 〉 ≈ 52 τη ≈ 0.3 τL and β ≈ 0.7. This behavior is illustrated in Fig. 5.8 and suggests
the presence of memory effects due to the correlations between the strong and negative events of the shear
rate γ̇. This also means that fibers are bending several times when they come into a clump of strong and
violent fluctuations of γ̇.
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Figure 5.8: Probability density functions (solid lines) of the time T between successive buckling events, normalized to
its average 〈T 〉 ≈ 52 τη for F = 1.6 × 105, and 〈T 〉 ≈ 36 τη for F = 3.2 × 105. The dotted line represents the exponential
distribution. The dashed line is a Weibull distribution (E.1) with shape β = 0.7 and scale parameter λ = 1.

Interplay between turbulence and rheology. The natural question that arises is: Does the Weibull distri-
bution has a specific impact in the statistical modeling of the number of fragments ? To address this question,
let us comment on the short-time and the long-time asymptotics of our model.

Large-time asymptotics. Large-time asymptotics can be estimated by the means of the Laplace
transform, a common tool in the theory of renewal processes. Defining ρ̂(k, s) =

∫ ∞
0 dt e−stρ(k, t) and

Ψ̂(k, s) =
∫ ∞

0 dt e−stΨ(k, t), one obtains from Eq. (5.11) the relation

ρ̂(k, s) = Ψ̂(s)k 1 − Ψ̂(s)
s

The Weibull distribution has a finite mean τ ≈ 0.3τL. This means that Ψ(s) = 1 − sτ + o(s) and ρ̂(k, τ) =

τe−ksτ(1 + o(1)) as s→ 0. This implies that on times t � τ, the distribution ρ(k, t) is akin to that derived from
exponential waiting times, and

ρt(k) ≈ τδ(t − kτ) as t � τ (5.13)

The effect of turbulence and of the large-time correlation of the shear rate is then fully prescribed by the
average waiting time τ. The fact that the inter-buckling time is a Weibull distribution rather than an exponential
function does not play a specific role. For the modeling, this means that we can rely on continuous time
approximation using the relation P(N, kτ) ≈ P(N|k) for large times kτ; This justifies the use of practical
kinetic description, as described in Appendix F, where we characterize the fragmentation process using the
various fragmentation rates estimated in the paper attached in §5.5.

Short-time asymptotics. To comment on this case, let us consider the case where daughter frag-
ments are assumed to be too small to break again, and make the following further approximation: every
buckling event identified as dangerous is a breaking event, that is all “dangerous buckling events” would
trigger a fiber fragmentation for the original fiber of size `, so that χ(1→ 1) = 0. In that case, one obtains

Pt(N) =

 1 −
∫ t

0 Ψ if N = 1
χ(1→ N)

∫ t
0 Ψ otherwise .

(5.14)
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In this case, the effect of turbulent fluctuations through the Weibull inter-buckling statistics is important.
The probability of short waiting times is enhanced compared to a Brownian environment that would be
characterized by an exponential distribution of waiting times with the same average. This observation
concludes our analysis.

5.4 Perspectives
In this chapter, we have described two fundamental mechanisms leading to fragmentation of small brittle
fibers in a turbulent flow. We presented a way to implement them in DNS, and sketched a stochastic framework
to account for the full fragmentation process, depending on the Lagrangian statistics of the shear rate.

To summarize, the first mechanism is due to a compressive effort, for which the fiber achieves large
values of the curvature and breaks by flexural failure. The second mechanism is due to an extensional effort,
for which the fiber achieves large values of the tension and breaks by tensile failure.

The outcomes of those two mechanisms are very different, resulting in different sizes and numbers
of the daughter fragments. Through tensile failure, fibers break into two pieces of equal length, each time
that their internal tension supersedes a threshold T?. In our approach, those events are directly related to the
shear rate reaching values ∝ T?/`2. This means that the stochastic modeling of tensile failure relates to the
Lagrangian statistics of the maxima of the shear rate, and this fully prescribes not only the number but also
the sizes of the daughter fragments. This observation clearly suggests that refined modeling of the extremal
statistics of the shear rate is key to accurate account of fragmentation.

At this point, a natural question could also be: Is this result fully realistic? Anyone who ever tried
to break an elongated body in two equal pieces by pulling it on both sides may object that it is very hard to
obtain exactly two pieces of equal size! The reason comes from the fact that in our daily environment material
objects have microscopic internal defects that favor the fragmentation near their neighborhood. Hence, a step
toward a more realistic description of tensile failure could involve a random distribution of defects along the
fiber, whose specific properties may depend on the type of material and on the corresponding physics of the
so-called fragile rupture (Landau and Lifshitz, 1959).

We implemented the flexural failure mechanisms in our numerics by breaking at positions along the
fibers where the local curvature is larger than a critical value κ?. We observe that this simple mechanism
is likely to trigger an effect reminiscent of a “random cascade” of successive flexural failures. Hence, the
number of pieces that a buckling event produces is not necessarily two. In the SBT framework, we argued
that such a fragmentation process produces a number of pieces ∝ γ̇1/2`2; This number is determined from
linear analysis, and relates to the most unstable buckling mode developed, given by the specific instantaneous
negative shear rate γ̇. This estimate provides a convenient way to estimate the rate of flexural failures in
our stochastic framework. This rate probably overestimate the number of pieces produced by a dangerous
event, and could be further substantiated by precisely tracking down the flexural failures along Lagrangian
trajectories as illustrated in Fig. 5.9.
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Figure 5.9: Top panel: evolution of the bending energy along the fiber trajectory. Bottom panel: evolution of the shear
rate, together with the critical value to going down a buckling instability of fibers with a flexibility of F = 3.2 × 105. In
both panels the dash-point lines show the times of fragmentation on the fiber.

Another issue relates to accurate statistical modeling of the interplay between the two fragmentation
mechanisms beyond the mean-field. We here studied the flexural and tensile fragmentation processes
independently from one another, but we appreciate that those processes do not commute: Both mechanisms
have their outcomes depend non-linearly on the sizes of the fiber. Fig. 5.10 shows an explicit example that a
tensile failure followed by a flexural failure does not yield the same number of pieces as a flexural failure
followed by a tensile failure of same magnitudes. Hence, the time-ordering of the sequences is a crucial
parameter when it comes to determine the statistics of the fragmentation.

Figure 5.10: Illustration of the non commutativity of flexural and tensile failure. In the left panel a flexural failure
initiates the fragmentation processa and in the right panel a tensile failure.

Finally, let us here point out that our analysis relied on several important simplifying modeling
assumptions. Relaxing them could constitute interesting exercises, in order to analize how much those
simplifications impact the modeling of fragmentation processes within turbulence. In our numerics, we did
not implement any kind of relative dispersion between the daughter fragments coming from a same ancestor.
This approximation greatly simplified our numerics, but constitutes an obvious shortcoming to accurately
describe long-time statistics of the fragmentation. In reality, the chaotic exponentiation followed by the
explosive separation of trajectories known to occur in turbulent flows should tend to separate them apart in
the long term. In the stochastic modeling, this phenomenon could be reflected at the level of the transition
kernels.

In our practical use of our stochastic framework, we also restricted ourselves to the description of the
first dangerous event leading to break-up, assuming that initial size is so small that the daughter fragments
have sizes and corresponding flexibilities which in practice prevent them from being broken again by turbulent
fluctuations. This is also quite a crude approximation, which would for example not hold were we to study
the statistics of long fibers, e.g. longer than the Kolmogorov scale.
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5.5. REPRODUCTION OF THE PAPER:
“DYNAMICS AND FRAGMENTATION OF SMALL INEXTENSIBLE FIBERS IN TURBULENCE”

CHAPTER 5. FRAGMENTATION OF FIBERS
BY TURBULENCE

Finally, our most salient observation is perhaps the fact that fibers undergo a process very reminiscent
of a cascade of fragments, but without inertia. It has been long argued in the scientific literature that
when genuine massive fibers breaks, flexural waves propagate which carry the flexural failure from the
initial breaking point throughout one end of the fiber, and produce highly non-homogeneous fragmentation
distributions. Studying fragmentation of massive fibers within turbulence is therefore another natural
perspective that could build on the present work.

5.5 Reproduction of the paper:
“Dynamics and fragmentation of small inextensible fibers in tur-
bulence”

We here reproduce the paper “Dynamics and fragmentation of small inextensible fibers in turbulence” pub-
lished in Philosophical transactions A, that was co-authored with Jérémie Bec and Christophe Henry.
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1. Introduction
The fragmentation process, which consists in breaking a body in different pieces, is very common
and relevant to a wide range of phenomena in science and technology [1,2]. Natural examples
occurring at different length scales are numerous, from break-up in DNA chains [3,4] to meteors
in space [5]. Moreover, a precise understanding of the material properties involved in the
breaking process proves fundamental in several industrial applications, as in combustion [6] or
in wastewater treatment [7]. Traditionally, fragmentation is modelled from a macroscopic point
of view using statistical approaches (e.g. [8–11]) to predict the time evolution of fragment size
distributions from empirical observations. It relies on population balance models, which are based
on a set of PDEs giving the mean-field behaviour of a population of objects. Such models require
information on two quantities: the fragmentation rate (i.e. the frequency of the break-up events)
and the daughter size distribution (i.e. the size of all fragments generated by a break-up event).
New models for these two quantities are needed to account for the effects of fluctuations and fine
physical phenomena occurring during break-up.

We focus here on the fragmentation of brittle elongated particles with a constant length, which
will be called inextensible fibres in the following. From the point of view of material sciences,
a brittle material breaks under the action of an external force with little elastic deformation and
without plastic deformation [12]. In essence, break-up at the molecular level occurs when the local
stress overcomes the internal cohesion between molecules. In the case of brittle fragmentation, the
fracture induced by this rupture of equilibrium is assumed to propagate instantaneously at the
material level leading to the fragmentation of the whole object [10,13]. At the scale of the fibre,
this fragmentation can occur due to three different actions: tensile failure occurs when the external
force acts to stretch the fibre along its main axis; flexural failure happens when an external torque
induces a flexion perpendicular to the fibre main axis; torsional failure occurs when the fibre is
twisted by an applied torque. In the present case of brittle materials, we consider the simplest
approximation of the fragmentation process where failure happens as soon as a given threshold
is reached. In that case, three thresholds are defined for each failure mechanism: a stretch force in
tensile failure, a bending angle in flexural failure and a twisting angle in torsional failure. These
three thresholds are actually related to each other since they all depend on the material properties
and geometry (which govern fragmentation at the molecular level).

This study addresses more specifically the case of inextensible fibres immersed in a fluid. Such
situations are found in a number of applications. For example, in the paper industry, cellulose
fibres have been investigated in [14]. In a biological context, fibre dynamics have been used
to model diatom phytoplankton colonies in the ocean [15] and organic matter at fresh water
intakes [16]. Besides, we consider the case of fibres that are smaller compared with the smallest
fluid scale (the Kolmogorov scale in turbulent flows). In that case, the dynamics of a fibre is
determined by the action of three forces: bending elasticity, viscous drag and internal tension.
The fibre will mostly experience tensile and flexural failures due to its stretching or compression
by the flow, while torsional failure is negligible due to the fluid flow linearity at such small
scales. Bending elasticity and viscous drag act together to stretch the fibre, making it akin to a
stiff rod. Tensile failure then occurs when the local tension reaches values above a threshold.
However, when fibres change their directions and experience strong-enough compression, their
configurations can become buckled [17]: this is known as the buckling instability. The instability
has been well documented for simple steady shear flows [18], in which there exists a critical value
of the flexibility above which buckling occurs. Clearly, flexural failure can only occur when the
fibre buckles and the curvature overcomes a threshold.

The problem of turbulent fragmentation has been essentially addressed for droplets [19,20],
fractal flocs [21] and microscopic polymers [22,23]. The break-up of macroscopic fibres has
been essentially addressed in laminar flow [24]. Accurate predictions in turbulent flows require
extending such work to strongly fluctuating environments and interpreting them within a
statistical framework. Remarkably, a similar dynamics holds true for fibres immersed in highly
fluctuating environments. For instance, it was shown in [25], that the dynamics of inextensible
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Table 1. Numerical and physical parameters of the direct numerical simulation: N3 number of collocation points, ν kinematic
viscosity, �t time step, ε̄ average kinetic energy dissipation rate, η = ν3/4/ε̄1/4 Kolmogorov dissipative scale, τη =
ν 1/2/ε̄1/2 Kolmogorov time, urms root-mean square velocity, L= u3rms/ε̄ large-eddy length scale, τL = L/urms large-eddy
turnover time, Rλ = √

15 u2rms/(ν
1/2ε̄1/2) Taylor-based Reynolds number.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

N3 ν �t ε̄ η τη urms L τL Rλ
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

40963 10−5 6 × 10−4 3.8 × 10−3 7.16 × 10−4 0.051 0.19 1.86 9.68 731
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

fibres that are smaller than the Kolmogorov scale in turbulent flow follow most of the time that of
stiff rods. Deviations occur when the fibres experience strong-enough local compression, making
them buckle. Such events are very rare and intermittent, because of the long-term Lagrangian
correlations of turbulent velocity gradients. During these events, the stresses experienced by the
particles can be strong enough to lead to their break-up. In fact, turbulent flows are known to
generate very large velocity gradients, and those, in turn, may initiate a fragmentation process.
Our aim here is to provide such statistics on the mechanisms of fibre break-up in a turbulent flow
with dilute fibre suspensions, and specifically to characterize the statistics of the extrema of both
the tension and the curvature. Those statistics obtained with fine-scale simulations of individual
fibres are used as the basic ingredients, in order to develop accurate macroscopic models, relevant
for the above-mentioned natural and industrial applications. Such models predict the time
evolution of the fibre size distribution. A question that we want to address relates to the generic
nature of turbulent fragmentation processes and of the resulting population dynamics. Turbulent
fluctuations are indeed expected to be sufficiently generic to ensure universal behaviours, as for
instance observed in [26] for the fragmentation of cracking solids.

To address this problem, we resort to numerical approaches that couple highly resolved
turbulent flow simulations to fibre dynamics simulations using the slender-body equation (see
below). We focus on the case of inextensible fibres that are brittle, smaller than the Kolmogorov
scale and that do not have an effect on the fluid.

This paper is organized as follows. In §2, we give a brief description of our settings, including
the slender body theory used to model fibres and the numerical tools used to simulate their
dynamics in turbulent flow. We moreover give an overview of the mechanisms pertaining to
fibre fragmentation (tensile failure and flexural failure). In §3, we investigate tensile failure and
show that it occurs when the fibre is straight. Consequently, the tension is always maximal at
its middle and the fibre always breaks in two equal pieces. We also give predictions on the rate
at which such failures happen and compare them to numerics. In §4, we turn to flexural failure
that happens when the fibre buckles. Thanks to a linear analysis of this instability, we obtain
predictions on the associated break-up rates and on the resulting size distribution. Finally, in §5
we summarize our findings and draw some perspectives.

2. Model and numerical method
The objective is to investigate fragmentation processes in a fully developed, homogeneous,
isotropic turbulent flow. To that aim, we use direct numerical simulations of the three-dimensional
incompressible Navier–Stokes equation. We use the pseudo-spectral solver LaTu with 40963

collocation points and a third-order Runge–Kutta time marching [27]. A force is added at each
time step to keep the kinetic energy constant in the two first Fourier shells. This leads the velocity
field to reach a statistically stationary, homogeneous, isotropic turbulent state. The Eulerian
parameters of the simulation are summarized in table 1.

Once in a statistical steady state, the flow is seeded with several millions of tracers. Their
dynamics is integrated with the same time marching as the fluid and using a cubic interpolation
of the velocity field at their location. Their trajectories together with the fluid velocity gradients
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at their location are stored with a period 20�t ≈ 0.23 τη for a time duration of 63 000 �t ≈ 740 τη ≈
3.9 τL). These data are used a posteriori to integrate the dynamics of flexible fibres.

We consider very thin fibres that can be approximated as inextensible Euler–Bernoulli beams
immersed in a viscous fluid and whose dynamics is thus given by the local slender-body theory
(e.g. [18]). This model employs fibres with length � and circular cross-section with radius a; the
aspect ratio is ε = a/� � 1. The position and conformation of a given fibre is then described by a
curve s �→ X(s, t), parametrized by the arc-length coordinate s ∈ [−�/2, �/2]. We moreover assume
that the fibre’s inertia is negligible, so that its dynamics is obtained by balancing locally the
viscous drag with the fluid to tension and bending elasticity, so that

∂tX = u(X, t) + 1
μ
D
[
∂s(T ∂sX) − E ∂4

s X
]

, with |∂sX|2 = 1 (2.1)

where μ = 8π ρf ν

b
and D= I + ∂sX ∂sXT,

where the specific form of the mobility matrix D arises from the anisotropic drag exerted by the
fluid on the slender fibre. This equation is supplemented with the free-end boundary conditions
∂2

s X = 0 and ∂3
s X = 0 at s = ±�/2. In the above equations, ρf is the fluid mass density, E is the fibre’s

bending modulus (also called flexural rigidity) defined as E = YI (with Y the Young modulus
and I the fibre’s moment of inertia) and the parameter b = −ln(ε2e) is much larger than 1. The
fluid velocity field is denoted by u. We focus on situations where fibres have a very low volume
concentration. In this very diluted regime, they are passively transported by the fluid flow, and
hence do not influence the dynamics of the advecting velocity field u. The tension, denoted T(s, t),
is the Lagrange multiplier associated with the inextensibility constraint |∂sX|2 = 1. The tension is
intrinsically non-local. The equation it solves is obtained by requiring that ∂t|∂sX|2 = 0 and reads

∂2
s T − 1

2
|∂2

s X|2 T = 3 E |∂3
s X|2 + 7

2
E ∂2

s XT∂4
s X − μ

2
∂sXTA(X, t) ∂sX, (2.2)

with the boundary conditions T = 0 at s = ±�/2. Here A denotes the velocity gradient
Aij(X, t) = ∂jui(X, t). This equation is equivalent to the Poisson equation satisfied by pressure in
incompressible fluid dynamics.

We assume that the fibres have a length � much smaller than the Kolmogorov dissipative
scale η. It is easily checked that their centre of mass X̄(t) then follow the dynamics of simple
tracers, namely dX̄/dt = u(X̄, t). Moreover, the fluid velocity variations along the fibres can be
linearized, u(X, t) ≈ u(X̄, t) + A(X̄, t) (X − X̄) with a local velocity gradient A that is constant along
the fibre. Under these assumptions, we integrate the local slender-body equation (2.1) along
the above-mentioned tracer trajectories, using the finite-difference scheme of [28] with N = 201
grid points along the fibre arc-length. The inextensibility constraint is enforced by a penalization
method. Time marching uses a semi-implicit Adams–Bashforth scheme with a Lagrangian time
step �tfib = 2.5 × 10−5. We use a linear interpolation in time to estimate the velocity gradient at a
frequency higher than the output from the fluid simulation. Note that the time step required for
the fibres is much smaller than that of the fluid. Indeed, we observe that, even by using a semi-
implicit scheme, the problem remains particularly stiff when E is small or, equivalently, μ is large.
As we will now see, these values of the parameters are of particular relevance.

In addition to the Reynolds number Rλ of the fluid flow, which is prescribed very large, the
dynamics of a given fibre depends on a single dimensionless parameter only: the non-dimensional
flexibility

F = 8π ρf ν �4

b E τη
. (2.3)

This parameter appears when non-dimensionalizing equation (2.1) with the two relevant scales
entering the dynamics and deformation of small fibres, namely their length � and the Kolmogorov
dissipative time τη. The non-dimensional flexibility can be understood as the ratio between the
time scale of the fibre elastic stiffness to that of the turbulent velocity gradients. For small values
of F , the fibre is very rigid and behaves as a rod, while for large F , it is very flexible and bends.
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Figure 1. Instantaneous configuration of a fibre with non-dimensional flexibilityF = 1.6 × 105 during a buckling event (b)
and as a stiff rod (a). Top: the colour rendering shows the fibre curvature. Bottom: tension as a function of the arc-length at the
same instant of time. (Online version in colour.)

In this second case, which corresponds to long fibres (small values of E or large values of μ), the
dynamics is much richer and the fibre develop into non-trivial geometrical configurations (see
top panels of figure 1).

When the fibre is in a fully straight state (figure 1a), one can assume that the tangent vector is
constant, i.e. ∂sX(s, t) = p(t) at all values of s. As shown in [28], its direction p is then a solution of
Jeffery’s equation for straight inertialess ellipsoidal rods

d
dt

p =Ap − γ̇ p, with γ̇ (t) = pTA(t) p. (2.4)

The orientation p is sheared and rotated by the velocity gradient tensor A, and the
stretching/compression component given by γ̇ is removed in order to fulfill the constraint |p| = 1.
The corresponding term in the right-hand side of (2.4) indeed originates from the tension in the
slender-body equation (2.1). The later is obtained by from (2.2) with ∂sX = p, leading to

T(s, t) = −μ

4
γ̇ (t)

(
s2 − �2

4

)
, (2.5)

meaning that the tension is maximal in the middle of the fibre and follows a parabolic shape with
the arc-length coordinate s (figure 1a). When the fibre is strongly compressed (γ̇ < 0), the straight
configuration might become unstable, leading to buckling (figure 1b). In that case, the tension can
display several local extrema (this will be discussed later in §a).

In turbulence, fibres are most of the time in a straight state and very rarely buckle [25]. It
was shown there that the buckling instability develops when the instantaneous value of γ̇ takes
large negative values. Besides, velocity gradients in turbulent flows can experience arbitrarily
large fluctuations. This impacts the dynamics of the fibre, and in particular the transition rates
between the straight and the buckled configurations. Explicitly, the fibres behave as stiff rods in
calm regions, and fibres bend/stretch more frequently in very fluctuating regions.

Large turbulent fluctuations may then initiate a break-up process. Indeed, strong stretching
and compression by the flow produces large values of the tension and curvature, respectively. As
anticipated, two mechanisms can then initiate a fragmentation: tensile failure when the fibre breaks
because the local tension is too high, and flexural failure when the fibre breaks due its curvature
being too large. Large positive values of the tension leading to tensile failure are attained when the
fibre is in a fully straight configuration and experiences a strong shear from the flow, as shown in
figure 1a. In this configuration, the bending energy is zero, thus the tension balance the stretching
due to velocity gradients. The solution of the tension is then a parabola, where the maximum is
attained in the middle of the fibre—as transpires from equation (2.5).
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Conversely, as is illustrated on the top panel of figure 1b, the curvature becomes very large
during buckling. Such large values of the curvature could lead to fragmentation through flexural
failure. These instabilities are typically dominated by a single mode with symmetric properties.
Such modes depends on the flexibility of the fibre and on the magnitude of the compression by
the flow. Depending on which of these two mechanisms is predominant, the fibres might break at
different locations. This could imply very different evolutions of the distribution evolution of the
fibre size distribution [29].

3. Fragmentation through tensile failure
We here start by investigating fragmentation due to large values of the tension. This occurs when
the maximal tension along the fibre is larger than a critical value T� that depends on its material
properties. To estimate the contribution of this mechanism to the fragmentation process, we need
to study both the rate λT(T�) at which a large tension is attained and the location where the
maximum is located on the fibre.

Large tensions are reached when the fibre experiences a strong stretching along its main axis
and is thus generally in a fully straight state. In that case, we have seen in the previous section (cf.
equation (2.5)) that the tension is a concave parabola with its maximum

Tmax = μ γ̇ �2

16
, (3.1)

reached at the middle of the fibre. As a consequence, a tensile failure will always break short fibres
in two equal pieces, giving a trivial daughter distribution. It should be noted here that this is true
for fibres without molecular defects (i.e. T� is constant along the fibre length).

Another consequence is that tensile failure occurs when the stretching rate along the fibre
exceeds a critical value, namely γ̇ > 16 T�/(μ�2), and thus when the velocity gradient reaches
strong positive values. Turbulent gradients along the Lagrangian path are known to display
very sharp fluctuations and oscillations. This implies that the rate at which a large value of γ̇

is exceeded, is approximately proportional to the probability distribution at this value, so that

λT(T�) ∝ Pr
(

γ̇ >
16 T�

(μ�2)

)
. (3.2)

The right-hand side involves the distribution of γ̇ and thus that of fluid velocity gradients. In
large-Reynolds-number turbulence, this distribution is fairly approximated by a lognormal with
far tails which are actually closer to a stretched exponential with an exponent ≈ 1/2—e.g. [30–33]).
Either of these two behaviours are compatible with our observations: For large values of the
tension it is not possible to distinguish one from the other. The inset of figure 2 shows the
probability density function of the stretching rate γ̇ . Its behaviour at positive values is well
represented by a lognormal distribution when γ̇ is of the order of τ−1

η with a far tail at γ̇ 	 τ−1
η

that rather approach a stretched exponential behaviour. As stressed in [34], the coefficients used in
fits have a non-trivial dependence upon the Reynolds number. From now on, we focus on the case
Rλ = 731, as chosen in our simulation. We will come back to this dependence in the conclusions.

These considerations suggest to use these two possibles forms to fit the tensile fragmentation
rate λT as a function of the physical parameters of the fibre. When T�/(μ�2) 	 τ−1

η , a stretched-
exponential form is expected to be more relevant, so that

λT(T�) ≈ λ0 exp

[
−a

(
τη T�

μ�2

)1/2
]

, (3.3)

with fitting parameters a frequency, λ0, and a dimensionless constant a. As can be seen in figure 2,
such a formula gives indeed a good approximation to numerical calculations of the tensile
fragmentation rates.



7
royalsocietypublishing.org/journal/rsta

Phil.Trans.R.Soc.A378:20190398
................................................................

0 0.05 0.1 0.15
critical tension T * (normalized by m�2/th )

10–4

10–3

10–2

10–1

1

fr
ag

m
en

ta
tio

n 
ra

te
 

T
 (i

n 
un

its
 o

f 
t h–1

)

= 80 000
= 160 000
= 320 000

stretched exponential
lognormal

10–2 10–1 1
thg·

10–4

10–2

1

PD
F

Figure 2. Tensile fragmentation rate λT as a function of the critical tension T� for various values of the non-dimensional
flexibility F . The rate has been non-dimensionalized by τ−1

η while the x axis displays τη T�/(μ�2). The solid line is the
stretched-exponential fit (3.3) with λ0 = 14 /τη , a= 34 and τ ≈ τη . The dashed line is the lognormal fit (3.4) with λ′

0 =
0.13/τη , a′ = 1.12 and τ = 102 τη . Inset: Probability density function (PDF) of the stretching rate γ̇ at positive values (blue
bold solid line, blue online), together with a stretched exponential fit (thin line) and a lognormal fit (dashed line). (Online
version in colour.)

At T�/(μ�2) ∼ τ−1
η , as can be seen in figure 2, the tensile fragmentation rate behaves as a

lognormal, namely

λT(T�) ≈ λ′
0 exp

[
−a′

(
log

τ T�

μ�2

)2
]

, (3.4)

where a′ is a dimensionless fitting constant, and λ′
0 and τ are fitting parameters with dimensions

of a frequency and a time, respectively. The values of these parameters reported in the caption
suggest that, while λ′

0 is of the order of the Kolmogorov time scale τη, the time τ is 100 times
larger. This can be explained by the fact that Tmax(μ�2) ∼ γ̇ /16 and in turn, as seen in [25], typical
values of γ̇ are of the order of 0.1/τη leading to a factor of the order of 100.

To summarize this section, let us stress that tensile failure is here entirely prescribed by the
(intermittent) statistics of the velocity gradients. This is a stylized feature of our approach, and
provides a simplified framework to study fragmentation. Note that this assumption holds true
only for small fibres. When considering fibres larger than the Kolmogorov length scale, the
velocity gradient will not be uniform along the fibre. This implies in particular that the fibre could
be locally stretched and compressed at the same time and breaks in pieces of arbitrary sizes.

Also, it is important to notice that reaching large values of the tension requires γ̇ to locally
exceed a critical value that is ∝ �−2. Tensile failure thus becomes rarer and rarer when fibres
become smaller. In addition, the daughter population is typically centred over the half of the
mother size. This implies that a fragmentation process involving only tensile failure cannot
efficiently lead to the fast formation of small fragments. As we will see in the next section, this
strongly differs when flexural failure is involved. In that case, many small segments can be created
during a single event.

4. Fragmentation through flexural failure
Conversely to tensile failure, flexural failure displays a much more complicated behaviour. Such
break-ups happen when the fibre is bent and, more precisely, when the curvature becomes
larger than a given threshold. Then, there exists a location s along the fibre such that, at the
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Figure 3. (a) Time evolution of the maximal curvature κmax along a single turbulent tracer trajectory but for three different
values of the non-dimensional flexibilityF . The upper part shows the full trajectory, while the lower is a semilogarithmic time
zoom on the buckling event occurring at time t ≈ 337 τη . (b) Rates at which the maximal curvature exceeds given values κ�

(as labelled) as a function of the non-dimensional flexibility. Each dataset is fitted by both a stretched exponential (solid curves)
and by a lognormal (dashed curves). (Online version in colour.)

break-up time t�, one has |∂2
s X(s, t�)| ≥ κ�. Clearly, as the curvature is continuous with respect

to arc-length and time, such a break-up occurs at the first time when the maximum of curvature
κmax = maxs |∂2

s X| exceeds κ�. As anticipated in §2, these events happen when the fibre undergo a
buckling. Such an instability occurs when the instantaneous value of the stretching rate γ̇ defined
in equation (2.4) becomes large negative (compression). Figure 3a shows the time evolution
of the fibre’s maximal curvature along a Lagrangian trajectory for different values of F . It
can be seen that buckling events, for which κmax = 0, are very sparse and intermittent. Such
events are separated by long periods, which can be of the order of the large-eddy turnover
time, during which the fibre is fully straight, up to numerical precision. It is shown in [25]
that in turbulence, the rate at which buckling appears is similar to an activation process. More
precisely, it was found that the fibre buckles when its instantaneous flexibility Floc(t) = τη |γ̇ (t)|F
becomes larger than a critical value F�, provided that γ̇ (t) < 0. This leads to estimate the buckling
rate as

λBuckl ∝ Pr
(

γ̇ < − F�

(τη F)

)
. (4.1)

As in the case of tensile failure rates, the distribution of the stretching rate γ̇ can be approximated
either by a lognormal or by a stretched exponential, leading to approximations of the above
formula. We expect the rate of flexural failure to be upper bounded by this buckling rate.

However, for break-up to occur, we additionally require that the maximum curvature exceeds
κ�. The corresponding rates are shown in figure 3b as a function of the non-dimensional flexibility
F and for various values of the threshold κ�. Lognormal and stretched exponential functional
forms give good approximations with fitting parameters that depend on κ�. Understanding this
dependence requires investigating more closely the development of the instability. Figure 3c
shows the time growth of the maximum of curvature during one of these events for various values
of the non-dimensional flexibility. One observes that the increase is approximately exponential
with a rate that depends on F . Small values of κ� are reached during the instability growth and
it is thus needed to characterize further this regime in order to quantify how this affect rates.
The development of the buckling instability is furthermore of importance as flexural failure will
actually not happen when the threshold is exceeded but rather when it is for the first time.
At difference with tension that has fast fluctuations, the curvature has an on–off behaviour.
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As can be seen in figure 3c, the growth of κmax can be followed by a period during which it
remains at finite values for quite some time. This indicates that the rates shown in figure 3b
are actually overestimating the actual flexural failure rates. In the following, we provide more
accurate estimates.

(a) Linear analysis and relevance to turbulent flows
The buckling instability occurs when the fibre, initially in a straight configuration ∂sX ≡ p,
experiences a strong compression by the flow. This is likely to happen when the flow locally
displays a violent shear, so that the rodlike fibre is like a Jeffery orbit [35]: in that case, the rod
rotates and is not aligned with the flow. During such event, the fibre alternatively experience
stretching and compression along its main axis, giving it the opportunity to buckle. Performing a
linear stability analysis for such orbits is however complex. Indeed, upon buckling, the initially
straight fibre picks a specific trajectory among an infinite family. The selected trajectory depends
on the initial perturbation and is very sensitive to fine sub-leading details, such as thermal
noise [36], fibre or fluid inertia [37,38], or, as in our turbulent settings, the fact that the flow is
not a pure shear.

As we will see in the sequel, a simplified linear stability analysis already fairly describes
buckling events, meaning that we can avoid delving into the complicated context of Jeffery orbits.
Let us consider that the fibre experiences a time-constant compression γ̇ = pTAp < 0 along its
direction. The base solution p(t) describes a rod-like solution to the slender body equation (2.1).
We introduce a perturbed solution as X(s, t) = X̄(t) + s p(t) + χ(s, t), where X̄(t) is the average
position of the fibre centre of mass and the perturbation χ is of small amplitude (i.e. |χ | � �).
For buckling, we are interested in perturbations that grow perpendicularly to the fibre direction.
The two transverse components of χ are decoupled and evolve as (e.g. [18])

1
|γ̇ | ∂tχ = χ + s ∂sχ + 1

4

(
s2 − �2

4

)
∂2

s χ − E
μ |γ̇ | ∂4

s χ , (4.2)

with the free-end boundary conditions ∂2
s χ = 0 and ∂3

s χ = 0 at s = ±�/2. This linear equation
admits solutions of the form χ (s, t) = eρ tχ̂(s), where χ̂ is the eigenfunction of the right-hand
side of (4.2) associated with the eigenvalue ρ. Once time is rescaled by γ̇ −1 and arc-length by
�, this eigenvalue problem depends on a unique non-dimensional parameter Floc = μ |γ̇ | �4/E,
which measures the ratio between the fluid compression and the elastic force. Because of the
presence of non-constant coefficients, there is no straightforward way to obtain the full spectrum
of eigenmodes as a function of the dimensionless flexibility Floc. Still, there are two trivial
solutions given by ρ/γ̇ = 1 with χ̂ = const. and ρ/γ̇ = 2 with χ̂ = a s and a constant. For these
two unstable modes, the fibre remains straight and does not buckle. To access more complicated
configurations, we rely on integrating numerically equation (4.2).

Figure 4a represents the 30 most unstable eigenvalues as a function of the non-dimensional
flexibility. A first non-straight mode becomes unstable when Floc >F�

1 ≈ 153. This threshold is in
agreement with [18]. This first growing mode, labelled as n = 1, is shown in figure 4b. When Floc
increases, there is a sequence of bifurcations with a change of the most unstable eigenfunction.
We label these modes with the number n of extrema that χ̂ contains (see panel b). The first
bifurcation is between order n = 1 and n = 2, which occurs at Floc =F�

2 ≈ 1840. When Floc further
increases, the most unstable modes are of higher order n. It also appears from figure 4b that
the amplitude of fluctuations decreases very fast as the arc-length coordinate s gets further from
the fibre centre. One finally observes that when Floc → ∞, the most unstable eigenvalues grow
as ρ/γ̇ ∝Floc.

In this asymptotics of large dimensionless flexibility, the small parameter F−1
loc multiplies the

highest-order derivatives. This indicates that the limit is singular but could actually be tackled
using a WKB (Wentzel, Kramers, Brillouin) perturbative approach (e.g. [39]). The WKB method
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Figure 4. (a) Thirty largest eigenvalues associated with the linear evolution (4.2) as a function of Floc. The two horizontal
lines at ρ = γ̇ and ρ = 2γ̇ show the two unstable straight modes. The three vertical lines atFloc = F�

1 ,F�
2 andF�

3 are
bifurcations above which the most unstable non-straight mode is n= 1, 2 and 3, respectively. The dashed line represents the
asymptotic behaviour ρ/γ̇ � Floc/1024 reached at large values. (b) Illustrations of the fibre geometric state in eigenmodes
of various orders n. (Online version in colour.)

suggests writing the solution as the exponential of an asymptotic series expansion

χ̂(s) ∼ exp

⎛
⎝1

ε

∑
p≥0

εpϕp(s)

⎞
⎠ , (4.3)

where ε =F−δ
loc is a small parameter and ϕp(s) are terms in the expansion. The exponent δ > 0 is

obtained by substituting the expansion (4.3) in (4.2) and balancing the leading-order terms. Far
from the fibre’s ends, one has

ρ

|γ̇ | = 1
4 ε2

(
s′2 − 1

4

)
(∂s′ϕ0)

2 − 1
Floc ε4 (∂s′ϕ0)

4 , (4.4)

with s′ = s/�. This gives ε =F−1/2
loc and ρ/|γ̇ | ∼Floc, meaning that δ = 1/2 and confirming the

observed linear behaviour of the eigenvalues in the asymptotics of Floc → ∞. Besides, when Floc
increases, the order n of the dominant mode becomes larger and the eigenfunction gets more
localized at |s′| � 1. This suggests expressing the dominant term as ϕ0(s′) = a0 + a1 s′ + a2 s′2 +
a3 s′3 + · · · . Now, using this expansion in (4.4) and balancing equal powers of s′, one obtains to
leading order

ρ

|γ̇ | = −Floc

16
a2

1 − Floc a4
1, so that a2

1 = − 1
32

±
√

1
1024

− ρ

|γ̇ |Floc
. (4.5)

This leading term contributes an exponential behaviour ∝ exp(±√Floc a1) at s′ = ±1 in the
eigenfunction χ̂ . When the real part of b is non-zero, this term diverges as a function of Floc
and this is incompatible with the imposed free-end boundary conditions. a1 should thus be a
pure imaginary number. This means that a2

1 is real negative, and with (4.5), we get necessarily
ρ/γ̇ <Floc/1024, the maximal eigenvalue corresponding to the case when the bound is reached.
This prediction gives the value 1/1024 for the constant of the linear behaviour of ρ, in agreement
with the measurements reported in figure 4. Note that for this specific eigenvalue, one obtains
a1 = i/

√
32 (i being the imaginary unit).
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Figure 5. (a) Typical asymptotic shape of the eigenfunctions consisting of a fast oscillation with a Gaussian envelope.
(b) Spectrum E(k)= |F[χ̂ ](k)|2 of the same function, where F[χ̂ ] designates the Fourier transform of χ̂ . It is a Gaussian
centred at k = k� with variance c/(2π 2).

Moving on to higher-order terms, one can easily check that contributions of the order of s′
vanish for the above value of a1. As to the terms ∝ s′2, they give

0 = 1
4

a2
1 − 1

16
(4 a2

2 + 6 a1a3) −
(

24 a2
1a2

2 + 12 a3
1a3

)
. (4.6)

Using a1 = i/
√

32, we get a2 = −1/8. This finally leads to writing ϕ0 ≈ a0 + i s′/
√

32 − s′2/8.
This asymptotic analysis suggest to write the eigenfunction of order n as

χ̂(s) =
⎧⎨
⎩

e−c (s/�)2
cos(2π k� s/�) for n = 2 k� + 1 odd,

e−c (s/�)2
sin(2π k� s/�) for n = 2 k� even,

(4.7)

whose typical shape is represented in figure 5a. The above asymptotic analysis shows that the
most unstable mode is characterized by an oscillating function with a wavelength k� and a
Gaussian envelope with a coefficient c. These two parameters are given by

k� �
√Floc

2π
√

32
and c �

√Floc

8
. (4.8)

To estimate numerically k� and c, we use the Fourier spectrum of the eigenfunction. It is defined as
the squared modulus of the coefficients of the Fourier transform of χ̂ . As illustrated in figure 5b,
the spectrum of the asymptotic form (4.7) is a Gaussian function of k. The wavenumber k� is
approximated as the mean associated with this distribution, while the coefficient c is deduced
from its variance. We use this approach to measure k� and c as a function of Floc for the
eigenfunctions obtained numerically from the integration of the linear system (4.2). The results
are displayed as solid curves on figure 6, together with the asymptotic predictions (4.8) displayed
as black dashed curves. The good agreement between these curves confirm the relevance of the
asymptotic analysis at large values of Floc that we consider here.

Following this linear analysis, we then perform the same kind of analysis to the case of fibres
that follow turbulent trajectories. To capture the dawn of the instability, we track fibres whose
curvature, after having almost relaxed to zero, grows again and exceeds a given threshold. We
use the fibre’s shape at the instant of time when the threshold is first reached as an estimate of the
growing mode. In such fluctuating settings, we make use of the instantaneous non-dimensional
flexibility Floc = τη|γ̇ |F . For each event, we measure k� and c from the Fourier spectrum of the
fibre shape. We then compute their average value conditioned on the observed value of Floc.
The resulting estimates are shown as symbols in figure 6 for three different values of F . Clearly,
these measurements show that the linear analysis reported above is able to describe the growth
of buckling modes in turbulent flows, assuming that the relevant parameter is given by the
instantaneous value of the non-dimensional flexibility.
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themost unstable mode. Results are shown both for the numerical integration of the linearized dynamics (solid curves) and for
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(b) Estimates for flexural fragmentation rates in turbulence
We now apply the above considerations to determine both the rate at which flexural failure occurs
and the resulting daughter size distribution upon fragmentation. We assume that the fibres are
brittle, so that they break as soon as their curvature exceeds a critical value κ�, which is relatively
small. Because of that, break-up happens while the fibre is still at the beginning of a buckling event
that can be described within the linear approximation. We moreover assume that the instability
growth is given by eigenvalues and eigenfunctions that are properly described by the large-
flexibility asymptotics of the previous subsection (this assumption is only valid if the growth
rate is large enough to consider that the shear γ̇ is constant during the instability and so F is
large).

(i) Fragmentation rate

The rate at which flexural failure occurs is the rate at which the maximal curvature along a fibre
exceeds for the first time the critical value κ�. A first condition for this to happen is to have the
fibre developing a buckling: this requires Floc = τη |γ̇ |F becoming larger than a critical value F�

at time t0, which marks the beginning of the event. After that, the instability grows exponentially
with a rate ρ � |γ̇ |Floc/1024. The maximal curvature also follows this growth, so that

κmax(t) � κmax(t0) exp

[
τη |γ̇ |2 F

1024
(t − t0)

]
. (4.9)

Of course, without an initial curvature nothing would happen. It is indeed required to have
initially a small deviation to the base state for the instability to develop. In physical situations,
several effects give such perturbations, including thermal noise, material inhomogeneities along
the fibres, a small extensibility, the fluid flow modifications due to the fibre, and more importantly,
the sub-leading turbulent fluctuations that are neglected when we assume that the fibre samples
a space-independent fluid velocity gradient. Such effects are clearly not in the model we use. Still,
in our simulations, the instability is triggered by a small numerical noise that comes either from
the accuracy of the method, from roundoff errors, or from the penalty approach that is used to
enforce inextensibility. This error is visible in figure 3c where, before the buckling starts, one has
κmax ≈ κ0 ≈ 2 × 10−10 �−1.

No matter how small they are, arbitrary values of curvature are not necessarily reached by all
buckling events. For instance, during the specific event shown in figure 3c, the maximal curvature
barely reaches κmax = 10−2 �−1 in the case of the fibre with the smallest flexibility. The growth rate
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Figure 7. (a) Complementary Cumulative Distribution Function (CDF) of the first time at which the fibres curvature hits a value
κ� = 10−6, shown for various values of the flexibility, as labelled. (Time is here in units of τη .) (b) Fragmentation rate λK as
a function of the dimensionless parameter (1/F ) log(κ�/κ0), with a reference curvature set to κ0 = 2 × 10−10. Symbols
correspond to different values of κ� and F . The solid line is the stretched-exponential fit (4.12) with λ0 = 0.055 τ−1

η and
a= 160. The dashed line is the lognormal fit (4.13) withλ′

0 = 0.06 τ−1
η , a′ = 0.11, and b′ = 13.12. (Online version in colour.)

is there too small or, equivalently, compression does not last long enough. During this very event,
the two other more flexible fibres reach much larger curvatures and saturate at κmax ≈ 30�−1.
These distinct behaviours originate from large differences in the instability growth rates. The time
during which the fibre is compressed is completely determined, either by the fluid flow through
the Lagrangian persistence time of velocity gradients, or by the evolution of the base orientation
p(t), which for instance perform a Jeffery orbit and tumbles. In both cases, the relevant time scale
during which the fibre is compressed is of the order of |γ̇ |−1.

A necessary condition for the fibre to break is thus that it reaches curvatures larger than κ� on a
time smaller than the compression duration � α |γ̇ |−1, where α is an order-unity constant. Using
the exponential law (4.9), one should thus have

t − t0 � 1024
τη |γ̇ |2 F log

(
κ�

κ0

)
< α |γ̇ |−1. (4.10)

This leads to the following estimate for the rate at which flexural failure occurs:

λK(κ�) ∝ Pr

(
γ̇ < −

[
(1024/α) log(κ�/κ0)

]
(τη F)

)
. (4.11)

This formula is similar to the buckling rate of equation (4.1) except that, this time, the critical
non-dimensional flexibility depends on κ�. Also, it suggests that λK is simply a function of
the dimensionless parameter (1/F) log(κ�/κ0) that can be fitted, as before, by either a stretched
exponential or a lognormal.

To test this prediction numerically, the main difficulty is to estimate this rate from finite-time
simulations. Depending on the values of the fibre flexibility and of the critical curvature, the
typical time needed for the curvature to become larger than κ� can be longer than the simulation
duration. Hence, to estimate this rate, we have rather measured the probability distribution of the
first time at which κmax hits κ�. The complementary cumulative distribution function is shown in
figure 7a for different flexibilities and a fixed value of the critical curvature. Clearly, one observes
that the first-hit time follows an exponential law. Fitting such laws gives a straightforward way
to estimate λK as a function of the two parameters F and κ�. The results are shown in figure 7b.
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One finds that when F is large enough, all data indeed collapse when represented as a function
of the non-dimensional parameter (1/F) log(κ�/κ0).

To propose fitting formulae for this rate, we rely on approximating the distribution of turbulent
velocity gradients by either a stretched exponential or a lognormal law, as was done for tensile
failure. In the first case, we write

λK(κ�) ≈ λ0 exp

[
−a

(
log(κ�/κ0)

F

)1/2
]

, (4.12)

with fitting parameters λ0 (with the dimension of a frequency) and a (dimensionless). As can be
seen in figure 7a, this a formula gives a rather good approximation. As to the lognormal fit, it reads

λK(κ�) ≈ λ′
0 exp

[
−a′

[
log

(
log(κ�/κ0)

F

)
+ b′

]2
]

, (4.13)

where the fitting parameters are this time a frequency λ′
0 and two dimensionless parameters a′

and b′. As for tension, the lognormal fit does not describe well data associated to the tail of the
distribution, that is small values of F or, equivalently, large values of κ�. These two fits provide
estimates of the rate at which flexural failure occurs as a function of all physical parameters,
including the fibre length, aspect ratio, Young modulus, the fluid velocity and mass density that
enter the definition of the non-dimensional flexibility F given in equation (2.3).

(ii) Daughter size distribution

We next turn our attention to understand the resulting sizes of the fragments obtained due to
flexural failure during buckling. Up to now, by focusing on the flexural failure rate, we have
addressed only a single (the first) break-up event. Because the fibre is curved according to a
given buckling mode of order n, the location where break-up occurs clearly depends on n.
When n is is odd, the break-up occurs at the centre of the fibre, which breaks in two equal
pieces. When n is even, the two resulting fragments have approximately sizes � × (n/2)/(n + 1)
and � × (n/2 + 1)/(n + 1). Actually, this primary break-up is sometimes followed by successive
fragmentations. We indeed find that, because of the continuing compression by the flow, the
unstable mode keeps on bending the small secondary pieces, so that their curvature still grows
and can reach again the critical value. This is illustrated for a specific buckling event in figure 8
where we have implemented in the numerical simulation the break-up process and the follow-up
of resulting fragments. In this case, the instability triggers the growth of a mode of order n = 14
(figure 8a). A first break-up occurs at s ≈ −0.02 �, but the resulting fragments undergo successive
fragmentations. This process finally leads to the formation of eight pieces. In this daughter
distribution, six fragments have sizes of the order of �/(n + 1) ≈ 0.07 �, the two remaining being
associated with the ends of the original fibre (figure 8c). As can be followed in figure 8b, the
locations where new break-ups occur follow the structures of the initial bending. Note that the
full process occurs on time scales of the order of τη, confirming that this corresponds to a single
buckling event. Note that for this specific event, we have tested how the fragmentation process
depends upon the numerical scheme, and in particular on the choice of the time step size �t. Our
results indicate that stability and convergence are ensured only when �t is much smaller than
the local time scale prescribed by the instability growth rate. In order to maintain a reasonable
computational cost, we have thus implemented a time-adaptive strategy that accounts for such a
constraint.

A single buckling event can hence lead to the creation of several small pieces, depending on
which wavenumber is excited. The selection of the most unstable mode depends on the local value
of the non-dimensional flexibility Floc = τη |γ̇ |F , which fluctuates with γ̇ . Following the results
of previous section, we expect for a given value of Floc that the most unstable mode is of order
n � 2k� � √Floc/(π

√
32). In that case, the daughter distribution will be peaked at �′ = �/(n + 1) �

π
√

32 �/
√Floc. Assuming that each buckling event leads to break the fibre in (n + 1) fragments

of equal size �′, we can draw an approximation for the daughter size distribution. Hence, the
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Figure 8. Evolution of a fibre during fragmentation. Panel (a) shows the growing mode by displaying, at the time of the first
break-up, the fibre’s curvature as a function of the arc-length s. Panel (c) represents the time evolution of the size distribution
(time growing from top to down); each horizontal plain line is a break-up event and segments correspond to fibre fragments.
(b) Three instantaneous configurations of the fragments at time t1, t2 and t3. Dark regions (blue online) correspond to a zero
curvature and light (yellow online) to values close to κ�. Note that on this pseudo three-dimensional representation, the arc-
length s runs from right to left. (Online version in colour.)

probability that a fibre of length � breaks in �/�′ fragments of size �′ reads

Pr(� → �′) ∝ �/�′

τη F
pγ̇

(
−32 π2(�/�′)2

τη F

)
, (4.14)

where pγ̇ (·) denotes the probability density function of the stretching rate γ̇ . Assuming as
previously that the later follows a stretched-exponential law, one obtains

Pr(� → �′) ∝ �/�′

F e−a (�/�′)/
√
F , (4.15)

where a is a positive constant. This particularly simple form suggests that the creation of small-
length fragments follows an activation-like distribution. In practical terms, this implies that
fragment sizes below a�/

√
F are statistically irrelevant and almost never observed. An equivalent

form can be written for lognormal statistics of γ̇ , namely

Pr(� → �′) ∝ �/�′

F e−a′ [log((�/�′)2/F)+b′]2

, (4.16)

with a′ and b′ constants. This second leads to the same qualitative considerations as above.
Finally, to illustrate the complexity of this process, we show in figure 9, the fibre length

distribution of fibres after the first fragmentation series. All fibres have initially the same length
� and the same non-dimensional flexibility F = 32 000. The simulation is done for a specific value
of the critical curvature (κ� = 10−6�−1), above which these fibres break. A fragmentation series
is defined as the set of break-ups occurring during the same buckling event, that is in a time
lag going from the initial development of the buckling instability to the time when all fragments
have relaxed to a fully straight configuration. The resulting distribution is clearly multi-modal. It
develops a peak at sizes �′ of the order of �/2, corresponding to fibres that broke only once during
this series. Such events represent approximately one half of the fragmentations. Another marked
peak is present at �′ ≈ �/12. This other maximum is an artefact of the representation, as smaller
are the segment, more numerous they are. Clearly, the number of fragments sharply tends to zero
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Figure 9. Histogram of the length �′ of fragments stemming from the first fragmentation event encountered by 12 000 fibres
with initial length � and a flexibilityF = 320 000. (Online version in colour.)

when their size becomes very small. Finally, the distribution displays finite values at intermediate
sizes, contributing a significative probability of obtaining fragments of sizes �/3, �/4, �/5, etc.

5. Conclusion and perspectives
We have studied the fragmentation processes undergone by small, inextensible, inertialess fibres
in turbulent flow, focusing on tensile and flexural failures. In both cases, we have shown that
break-up occurs when the fibre runs into a flow region of high strain, where it is either stretched
above internal cohesive forces or compressed, buckles and fractures under excessive bending.
By assuming an idealized description for internal fragmentation processes, we found that the
fragmentation rates can be expressed through the distribution of turbulent stretching rates. Using
standard functional approximations for such probability laws, we proposed fits for both the
tensile failure and the flexural failure rates that are calibrated and validated against the results
of direct numerical simulations in a high-Reynolds-number flow. Our analysis emphasizes the
central role played by the fibres non-dimensional flexibility in understanding how frequently
fragmentation occurs.

Besides rates, we reported results on daughter size distributions upon fragmentation. Tensile
failure always occurs when the fibre is stretched by the flow and thus has a fully straight
configuration. The tension is then maximal at its centre, so that this type of break-up always
produces two fragments with equal sizes. We found that the situation is more intricate in the
case of flexural failure. Fragmentation occurs when the fibre develops a buckling instability and
the resulting break-up process produces a size distribution that depends on the details of the
most unstable buckling mode. By performing a linear stability analysis, we provided estimates
of this size distribution that depend on the instantaneous fluid strain experienced by the fibre.
This approach indicates that the number of fragments produced upon break-up becomes larger
when the fibres experiences more violent compressions. Our analysis builds upon the results of
Vandenberghe & Villermaux [13] on how buckling affects the fragmentation of elastic slender
bodies. Specifically, they studied the fragmentation of elongated bodies considering the effect of
inertia (which has been neglected in this paper). They show the existence of an additional effect
in the fragmentation process: the propagation of elastic waves after a first break-up. The released
energy is able to increase further the curvature in the newly separated parts of the fibre, possibly
leading to successive secondary break-ups and to the formation of many small-size fragments. In
our work, we unveil another, possibly complementary mechanism where the smaller fragments
appear as fingerprints of the initial most-unstable growing mode. The case of inertial fibres with
a size that can be larger than the Kolmogorov scale will be studied in the future.
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An appealing prospective to our work concerns the Reynolds-number dependence of
fragmentation rates and processes. While our numerics limited themselves to a single level
of turbulence, our analysis can be easily extended to encompass intermittent descriptions
of turbulent statistics. At a qualitative level, one expects more violent fluctuations as the
Reynolds number increases. This implies that the rare events leading to the production
of many small fragments should have an increasing statistical relevance. At a quantitative
level, one can for instance apply the recent work of Buaria et al. [34], who carefully
investigated the Reynolds-number dependence of the probability distributions of velocity
gradients. Their findings can be straightforwardly used in our approach to write an
explicit Reynolds-number dependence of the fragmentation rates and associated daughter size
distributions.

Finally, it is important to stress again that, in this work, we have oversimplified the
microscopical break-up processes by considering that the fibres material is brittle and that
fibres are free of any molecular defects. In most realistic settings, the threshold value for each
break-up mechanism may vary along the fibre length while plastic effect cannot be neglected,
meaning that flexural failure may occur at locations that have been bended several times in
the fibre’s history. Even if they involve an extra parametrization, such effects can be easily
implemented and investigated numerically (e.g. [40]). We expect in particular interesting impacts
of the non-trivial time distribution of violent fluctuations. The turbulent fluid strain that is
experienced by a fibre along its Lagrangian trajectory is typically very intermittent in time, so
that buckling events are strongly correlated among each other. Nevertheless, generalizing to such
settings the analysis that has been developed here represents a real challenge. The strongest
bending is indeed expected to occur when the buckling instability has saturated, questioning
in that case the relevance of the linear analysis. Besides, the more general case of prolate/
oblate particles with a finite aspect ratio requires more subtle fragmentation scenario since it
can occur along two-dimensional planes, leading to fragments that can quickly display a more
complex shape.
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CHAPTER 6. CONCLUDING REMARKS

6 | Concluding remarks

We reported troughout this manuscript new results pertaining to the dynamics and the fluctuations of small
complex particles in a turbulent flow. As discussed in the introduction, our definition of a complex particle
emcompasses any particle which is not a tracer, and possesses non-trivial properties impacting their dynamics,
among them non-trivial shapes, response times, sizes or rheologies. To build quantitative insights about the
interplay between such properties and turbulence, we focused on two specific cases, namely small inertial
spheroids and small flexible fibers, for which we used massive numerical simulations of the Navier-Stokes
equations to generate high Reynolds homogeneous isotropic turbulence, and to our knowledge unprecedented
statistical datasets.

Those datasets allowed to address in a quantitative fashion the three questions formulated in the
introduction:

• How do turbulent flows prescribe the dynamics of complex particles?

• How do turbulent flows prescribe the concentration patterns of complex particles?

• How to model fragmentation processes caused by turbulence?

Beyond constituting a guideline in the exposition of our results, those three questions also allowed us to
formulate new perspectives related to the modeling of complex particles in turbulence.

Summary of our results. Our first stream of results relates to the interplay between shape, mass and
turbulence, and to that end we studied heavy spheroids in a homogeneous isotropic turbulent flow. In this
approach, where we ignore the effects of gravity and buoyancy, mass only prescribes the response times, either
larger (for “heavy” particles) or smaller (for “light” particles) than the viscous Kolmogorov timescale τη. The
coupling with turbulence is then fully determined by their shapes, through the aspect ratio λ, and by response
time, through the Stokes number St = τp/τη. We showed that the translation motion and the orientation
statistics are only weakly coupled. The translational motion is almost fully prescribed by the motion of an
equivalent sphere with response time τ?p = τη St? based on a suitably defined harmonic Stokes number built
from the resistance tensor. While the harmonic Stokes number does not fully account for fine-scale statistics
such as the two-time statistics of the acceleration components, the deviations remain very weak, and the
description in terms of an effective sphere proves very efficient. On the other hand, the orientation statistics
display more intricate features. While the statistics of the orientation and of the rotation rate of light particles
seem fully prescribed by St?, this is no longer the case for heavy spheroids. The threshold value is identified
as St? ≈ 0.7, above which the statistics become non-universal with respect to the shape. This behavior was
found to be reflected on the concentration properties of the particles. In particular, we recovered and extended
the observations of Bec et al. (2005, 2007) made in the spherical case, where the particles concentrate on
dynamic fractal sets whose position is correlated with the dissipative structures of the flow. Our study shows
that deviations are small but measurable, and this means that new statistical models should be developed to
account for non-sphericity in the concentration patterns of heavy particles.

Our second stream of results relates to the interplay between shape and rheology, and this led us to
study small flexible fibers without inertia, passively transported by a turbulent flow. To generate the relevant
statistical dataset, we relied on the local slender body theory (SBT) in the overdamped approximation, which
is the simplest but still highly-non trivial continuous framework to tackle the dynamics of flexible fibers. Our

Université Côte d’Azur 118



CHAPTER 6. CONCLUDING REMARKS

data shows that fibers are stretched and compressed by the turbulent velocity gradient. We observed that
fibers spend most of the time stretched as stiff rods, where their dynamics is fully described by the Jeffery’s
equations of rods. Fluctuations appear when the fibers are strongly compressed by the flow. In such cases, the
fibers go into a buckling instability. These events are very rare and intermitent, and are determined by the
turbulent fluctuations. We found that the buckling rate can be phenomenologically modeled in terms of an
activation process, and an anomalous Arrhenius law. Such is also the case for other statistics related to the
orientation dynamics, such as the statistics of misalignments, described through a suitably defined tangent
angle, and the super-buckling rates, describing events where the fibers switch their orientations following
buckling events.

Finally, we described two fundamental mechanisms leading to fragmentation of small brittle fibers
in a turbulent flow: tensile failure when fibers break by an extensional effort, for which the internal tension
achieves high values; and flexural failure when fibers break by a compressive effort, for which the fiber
achieves large values of the curvature. The outcomes of those two mechanisms are very different, resulting in
different sizes and numbers of the daughter fragments. Through tensile failure, fibers break into two pieces of
equal length, each time that their internal tension supersedes a threshold T?. In our approach, those events
are directly related to the shear rate reaching values ∝ T?/`2. This means that the stochastic modeling of
tensile failure relates to the Lagrangian statistics of the maxima of the shear rate, and this fully prescribes
not only the number but also the sizes of the daughter fragments. The flexural failure mechanism is more
complex. In the SBT framework, we argued that the number of pieces generated by a buckling instability can
be expected to go ∝ γ̇1/2`2; This number is determined from linear analysis, and relates to the most unstable
buckling mode developed, given by the specific instantaneous negative shear rate γ̇. We observed that the
flexural failure mechanism is likely to trigger an effect reminiscent of a “random cascade” of successive
flexural failures, as observed in the fragmentation of inertial elongated particles.

Perspectives. In our view, these different series of results pave the way for future work and new challenges
in the description of complex particles in a turbulent flow. In relation to spheroids in a turbulent flow,
we can think of refining the description of the orientation rate, and in particular of the interplay between
tumbling and spinning of spheroids. Qualitative insights could probably be obtained from theoretical study of
particles within random velocity fields, for example extending a previous approach by Vincenzi (2012) to
include inertia. This setting could also possibly be used to provide qualitative insights about the preferential
concentration patterns and the depletion of small-scale clustering by non-sphericity.

Related to shapes, one could want to understand the dynamics induced by more complex shapes, such
as non-symmetrical ellipsoids. We believe, that lack of symmetry should not impact the translation dynamics
and the relevance of the harmonic Stokes numbers, but would probably produces non-trivial deviations for
the rotational dynamics and the concentration properties if combined with high response times. Finally,
one could wish to implement in our numerics the effects of gravity. This modification would require only
minor modifications of our codes, and might lead to interesting interplay between gravitational settling and
preferential concentrations. Among other effects, but that would possibly require more work, one could also
think about implementing hydro-dynamical or physical interactions between the particles, in order to model
small but finite-size spheroids.

In relation to fibers, one could wish to explore the relevance of the local slender body theory beyond
the description of small fibers in homogeneous isotropic turbulence. To that end, one development relates
to the implementation of large flexible fibers in 2D turbulence and large fibers immersed in a channel flow.
Preliminary results show that the local slender body theory in 2D turbulent flows reproduces the statistics
of specific mechanical models of fibers, such as the elastic chains studied by Picardo et al. (2018), at least
at a qualitative level, showing fibers buckling within the vortex zones and stretching outside. Again, one
could wish to refine the description by considering massive fibers and to study how preferential concentration
patterns are or not altered (Singh et al., 2020) and how fragmentation occurs. Another natural development
is the behavior of fibers within a channel flow rather than within a homogeneous isotropic turbulent fluid.
Preliminary results considering long and flexible fibers transported within a turbulent channel flow show
fibers qualitatively drifting close from the boundaries and preferentially concentrate in the bulk of the flow. A
fine understanding on the mechanisms at play relating the migration statistics to the rheology of the fibers is
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yet elusive. A longer-term perspective relates to modeling intra-fiber or fiber-fiber interactions. Experiments
show that long fibers can get knotted and form entangled aggregates; and this physics certainly reflects on
their transport. The statistical analysis of the topologies of such intricate fibers could probably prove a fruitful
and open field of study.
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A | Dynamics for an ellipsoid of arbi-
trary shape

In Chapter 3, we presented the equations describing the dynamics of an ellipsoid of revolution, also known
as a spheroid. Those equations are in fact deduced from a general set of equations valid for ellipsoids
characterized by arbitrary values for their axes a, b and c (Jeffery, 1922; Fan and Ahmadi, 1995). Please
recall that the translational dynamics is defined in the laboratory frame (ex, ey, ez) and the rotational dynamics
is defined in the particle frame (ex̂, eŷ, eẑ). We list below the relevants quantities from which the equations of
Chapter 3 are deduced.

Resistance tensor. The resistance tensor is expressed in the particle frame. It is the diagonal matrix (Ober-
beck, 1876):

K̂ = 16 πaλ


(χ0/a2 + χ1)−1 0 0

0 (χ0/a2 + χ2)−1 0

0 0 (χ0/a2 + λ2χ3)−1

 (A.1)

Shape parameters. The shape parameters χ0, χ1, χ2 and χ3 have been computed by Brenner (1964)
as

χ0 = abc

∞∫
0

dβ
∆
, ∆(β) =

√
(a2 + β)(b2 + β)(c2 + β),

χ1 = abc

∞∫
0

dβ
(a2 + β)∆

, χ2 = abc

∞∫
0

dβ
(b2 + β)∆

, χ3 = abc

∞∫
0

dβ
(c2 + β)∆

.

(A.2)

Moment of inertia. The moment of inertia of an ellipsoid about its principal axis is a diagonal matrix:
Ix̂ 0 0

0 Iŷ 0

0 0 Iẑ

 =
mp

5


b2 + c2 0 0

0 a2 + c2 0

0 0 b2 + a2

 =
4
15

πρpabc


b2 + c2 0 0

0 a2 + c2 0

0 0 b2 + a2

 (A.3)
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Hydrodynamic torque. The hydrodynamic torque acting on an ellipsoid in the limit of a Stokes flow
(see Jeffery (1922)) is


T x̂

Tŷ

T ẑ

 =
16
3
ρνπabc


b2+c2

b2χ2+c2χ3

a2+c2

a2χ1+c2χ3

a2+b2

a2χ1+b2χ2




b2−c2

b2+c2 τẑŷ + (ωẑŷ −Ωx̂)
c2−a2

c2+a2 τx̂ẑ + (ωx̂ẑ −Ωŷ)
a2−b2

a2+b2 τŷx̂ + (ωŷx̂ −Ωẑ)

 , (A.4)

where

τẑŷ =
1
2

(∂ŷuẑ + ∂ẑuŷ), τx̂ẑ =
1
2

(∂ẑux̂ + ∂x̂uẑ), τŷx̂ =
1
2

(∂x̂uŷ + ∂ŷux̂),

ωẑŷ =
1
2

(∂ŷuẑ − ∂ẑuŷ), ωx̂ẑ =
1
2

(∂ẑux̂ − ∂x̂uẑ), ωŷx̂ =
1
2

(∂x̂uŷ − ∂ŷux̂).
(A.5)
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B | Derivation of the flexural forces

In Chapter 4, we described the forces involved in a beam using the Euler-Bernoulli theory. Here, we describe
an explicit derivation of the internal flexural forces of the beam. From a mechanical point of view, the flexural
torque of the fiber acting at the central point of a cross-section (with normal vector n = e1) is:

M3 = M =

∫
S
−y (σ · n) · e1dS

= −

∫
S

yσ11 dS
(B.1)

where y here denotes the coordinate in the second-direction (e2) and σ11 represents the perpendicular
stress to the surface S acting on this surface. As shown in Fig. B.1, the flexural torque is a vector aligned
with the third-direction e3, and is generated by the fact that the perpendicular force T stems from surface
tensural efforts integrated in the direction e2.

Figure B.1: Scheme of the forces acting on a piece of beam, along with the flexural torque acting in the third-direction.

Hookes law for linear elastic material ties the stress σ and the strain ε as σ = Yε. The strain is a local
quantity, defined as the relative expansion or contration of the small piece. Explicitly and using the notations
of Fig. B.2, this quantity is identified as ε = ∆ds/ds.

Indeed, and again referring to Fig. B.2, we observe that the triangles 4HAB, 4HCD and 4BED are
similar. Using Thales theorem:

HA
AB

=
BE
ED

⇒
R
ds

=
−y
∆ds

⇒ ε =
∆ds
ds

=
−y
R

= −y χ

Université Côte d’Azur 123



APPENDIX B. DERIVATION OF THE FLEXURAL FORCES

Figure B.2: A geometrical view of the flexural deformation in a small piece ds of a beam. Here, R is the radius of
curvature and the curvature is defined as χ = 1

R .

Hence, the torque due to flexural forces is:

M =

∫
S

Y − y2 χdS

= −Y χ
∫

S
y2dS

= −YIχ

(B.2)

with Y the Young modulus and I the moment of inertia. Observe for example that I = πa4/4 for a
cylinder of radius a.
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C | Numerical scheme to integrate the
local slender body theory

Fibers have been numerically integrated along turbulent tracers using either MATLAB code or a C++ code.
All the details about the flow integration are shown in Chapter 2 and the numerical and physical parameters
of this specific data base are found in Table (4.1).

We work with several values of the non-dimensional flexibility F and millions of turbulent tracers.
The code integrates at the same time the dynamics of fibers and the dynamics of a stiff rod. The fiber
position X(s, t) is discretized into n = 201 grid points along the fiber arc-length s, so that the grid size is
∆s = L/n.

Following the approach of Tornberg and Shelley (2004), a second-order accurate centered finite
difference scheme is used. Spatial derivatives are discretized by accounting for the free-end boundary
conditions ∂2

sX = 0 and ∂3
sX = 0 at s = ±`/2. The explicit operators of the path derivative Dp and the discret

fiber position X j are:

1. Fot the first derivative:

D1X j =


(−X j+2 + 4X j+1 − 3X j)/(2∆s) j = 0
(X j+1 − X j−1)/(2∆s) 1 ≤ j ≤ N − 1
(3X j − 4X j−1 + X j−2)/(2∆s) j = N

(C.1)

2. Fot the second derivative:

D2X j =


(−X j+3 + 4X j+2 − 5X j+1 + 2X j)/(∆s2) j = 0
(X j+1 − 2X j + X j−1)/(∆s2) 1 ≤ j ≤ N − 1
(2X j − 5X j−1 + 4X j−2 − X j−3)/(∆s2) j = N

(C.2)

3. Fot the third derivative:

D3X j =



(−3X j+4 + 14X j+3 − 24X j+2 + 18X j+1 − 5X j)/(2∆s3) j = 0
(−X j+3 + 6X j+2 − 12X j+1 + 10X j − 3X j−1)/(2∆s3) j = 1
(X j+2 − 2X j+1 + 2X j−1 − X j−2)/(2∆s3) 2 ≤ j ≤ N − 2
(3X j+1 − 10X j + 12X j−1 − 6X j−2 + X j−3)/(2∆s3) j = N − 1
(5X j − 18X j−1 + 24X j−2 − 14X j−3 + 3X j−4)/(2∆s3) j = N

(C.3)

4. Fot the fourth derivative:

D4X j =



(−2X j+5 + 11X j+4 − 24X j+3 + 26X j+2 − 14X j+1 + 3X j)/(∆s4) j = 0
(−1X j+4 + 6X j+3 − 14X j+2 + 16X j+1 − 9X j + 2X j−1)/(∆s4) j = 1
(X j+2 − 4X j+1 + 6X j − 4X j−1 + X j−2)/(∆s4) 2 ≤ j ≤ N − 2
(2X j+1 − 9X j + 16X j−1 − 14X j−2 + 6X j−3 − X j−4)/(∆s4) j = N − 1
(3X j − 14X j−1 + 26X j−2 − 24X j−3 + 11X j−4 − 2X j−5)/(∆s4) j = N

(C.4)
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The code is composed by the following steps:

1. compute the derivatives of X using the operator Dp,

2. compute the velocity along the fiber as:

Ai j(X, t) = ∂ jui(X, t), (C.5)

3. resolve the tension T̄ = T/E in the units of the bending modulus E, ensuring the inextensibility
constraint |∂sX|2 = 1 by the penalization method

2∂2
s T̄ − |∂2

sX|2 T̄ = 6 |∂3
sX|2 + 7 ∂2

sXT∂4
sX −

1
F
∂sXTA(X, t) ∂sX,+

1
F
β (1 − |∂sX|2) (C.6)

where β is a coefficient of penalization prescribed to be very small.

4. compute the time evolution of X with the semi-implicit Adams-Bashforth scheme.

5. update the position and orientation of the fiber.

We reproduce below the Matlab script that we used:

1 %% MATLAB SCRIPT : INTEGRATION OF FIBERS ALONG TURBULENT TRACER
2 % The g r a d i e n t a l o n g a t r a j e c t o r y i s supposed t o be s t o r e d i n t h e

a r r a y
3 % Sig which as a d imens ion 3 x 3 x Nt
4

5 t a u _ e t a = 0 . 0 5 1 3 ; % Kolmogorov t ime s c a l e
6 F = 2 . 5 e3 ; % non ? d i m e n t i o n a l f l e x i b i l i t y
7 L = 1 ; % f i b e r ’ s l e n g t h
8 Nt = 1000 ; % number o f t ime s t e p
9 d t = 2 . 5 e−4* t a u _ e t a ; % t ime ? s t e p s i z e

10 N = 200 ; % number o f g r i d p o i n t s a l o n g t h e f i b e r s ’
a r c l e n g t h

11 d e l t a _ s = L /N; % a r c ? l e n g t h d i s c r e t i z a t i o n
12 b e t a = 40 0 / t a u _ e t a ; % c o e f f i c i e n t o f t h e p e n a l i z a t i o n method
13

14 %% INITIAL CONDITIONS
15 mu = F* t a u _ e t a ; % f l e x i b i l i t y i n u n i t s o f t h e Kolmogorov t i m e s c a l e
16 % F i b e r s i n i t i a l i z e d as s t r a i g h t segmen t s a l o n g t h e x d i r e c t i o n
17 X = [ l i n s p a c e ( 0 , L ,N+1) ’ z e r o s (N+1 ,2) ] ;
18 % Rod i n i t i a l i z e d wi th t h e end− to −end d i r e c t i o n o f t h e f i b e r
19 P = (X( end , : ) −X ( 1 , : ) ) ’ ; % d i r e c t i o n
20 P = P / s q r t ( sum ( P . ^ 2 ) ) ; % n o r m a l i z a t i o n
21

22 %% FINITE−DIFFERENCES OPERATORS
23 % FIRST−ORDER DERIVATIVE
24 D1 = s p d i a g s ([ − ones (N+1 ,1) , z e r o s (N+1 ,1) , ones (N+1 ,1) ] , [ −1 0 1 ] ,N+1 ,N+1) ;
25 D1 ( 1 , 1 ) =−3; D1 ( 1 , 2 ) =4; D1 ( 1 , 3 ) =−1;
26 D1 (N+1 ,N+1) =3; D1 (N+1 ,N) =−4; D1 (N+1 ,N−1) =1;
27 D1 = D1 / ( 2 * d e l t a _ s ) ;
28 % SECOND−ORDER DERIVATIVE
29 % wi th f r e e −end BC:
30 D2 = s p d i a g s ( [ ones (N+1 ,1) ,−2* ones (N+1 ,1) , ones (N+1 ,1) ] , [ −1 0 1 ] ,N+1 ,N+1)

;
31 D2 ( 1 , 1 ) =2; D2 ( 1 , 2 ) =−5; D2 ( 1 , 3 ) =4; D2 ( 1 , 4 ) =−1;
32 D2 (N+1 ,N+1) =2; D2 (N+1 ,N) =−5; D2 (N+1 ,N−1) =4; D2 (N+1 ,N−2) =−1;
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33 D2 = D2 / d e l t a _ s ^ 2 ;
34 % wi th D i r i c h l e t BC:
35 L a p l D i r i c h l e t = s p d i a g s ( [ ones (N−1 ,1) ,−2* ones (N−1 ,1) , ones (N−1 ,1) ] , [ −1 0

1 ] ,N−1 ,N−1) ;
36 L a p l D i r i c h l e t = L a p l D i r i c h l e t / d e l t a _ s ^ 2 ;
37 % THIRD−ORDER DERIVATIVE
38 D3 = s p d i a g s ([ − ones (N+1 ,1) ,2* ones (N+1 ,1) , z e r o s (N+1 ,1) ,−2* ones (N+1 ,1) ,

ones (N+1 ,1) ] , [ −2 −1 0 1 2 ] ,N+1 ,N+1) ;
39 D3 ( 1 , 1 ) =−5; D3 ( 1 , 2 ) =18; D3 ( 1 , 3 ) =−24; D3 ( 1 , 4 ) =14; D3 ( 1 , 5 ) =−3;
40 D3 ( 2 , 1 ) =−3; D3 ( 2 , 2 ) =10; D3 ( 2 , 3 ) =−12; D3 ( 2 , 4 ) =6; D3 ( 2 , 5 ) =−1;
41 D3 (N+1 ,N+1) =5; D3 (N+1 ,N) =−18; D3 (N+1 ,N−1) =24; D3 (N+1 ,N−2) =−14; D3 (N+1 ,N

−3) =3;
42 D3 (N,N+1) =3; D3 (N,N) =−10; D3 (N, N−1) =12; D3 (N, N−2) =−6; D3 (N, N−3) =1;
43 D3 = D3 / ( 2 * d e l t a _ s ^3 ) ;
44 % FOURTH−ORDER DERIVATIVE ( when t r e a t e d e x p l i c i t l y )
45 D4 = s p d i a g s ( [ ones (N+1 ,1) ,−4* ones (N+1 ,1) ,6* ones (N+1 ,1) ,−4* ones (N+1 ,1) ,

ones (N+1 ,1) ] , [ −2 −1 0 1 2 ] ,N+1 ,N+1) ;
46 D4 ( 1 , 1 ) =3; D4 ( 1 , 2 ) =−14; D4 ( 1 , 3 ) =26; D4 ( 1 , 4 ) =−24; D4 ( 1 , 5 ) =11; D4 ( 1 , 6 )

=−2;
47 D4 ( 2 , 1 ) =2; D4 ( 2 , 2 ) =−9; D4 ( 2 , 3 ) =16; D4 ( 2 , 4 ) =−14; D4 ( 2 , 5 ) =6; D4 ( 2 , 6 ) =−1;
48 D4 (N+1 ,N+1) =3; D4 (N+1 ,N) =−14; D4 (N+1 ,N−1) =26; D4 (N+1 ,N−2) =−24; D4 (N+1 ,N

−3) =11; D4 (N+1 ,N−4) =−2;
49 D4 (N,N+1) =2; D4 (N,N) =−9; D4 (N, N−1) =16; D4 (N, N−2) =−14; D4 (N, N−3) =6; D4 (N

, N−4) =−1;
50 D4 = D4 / d e l t a _ s ^ 4 ;
51 % FOURTH−ORDER DERIVATIVE ( when t r e a t e d i m p l i c i t l y )
52 Op4 = s p d i a g s ( [ ones (N−3 ,1) ,−4* ones (N−3 ,1) ,6* ones (N−3 ,1) ,−4* ones (N−3 ,1) ,

ones (N−3 ,1) ] , [ −2 −1 0 1 2 ] ,N−3 ,N−3) ;
53 Op4 ( 1 , 1 ) =2 /1 1 ; Op4 ( 1 , 2 ) = −4 /11; Op4 ( 1 , 3 ) =2 /1 1 ;
54 Op4 ( 2 , 1 ) = −16 /11; Op4 ( 2 , 2 ) =4 3 /1 1 ; Op4 ( 2 , 3 ) = −38 /11;
55 Op4 (N−4 ,N−3) = −16 /11; Op4 (N−4 ,N−4) =4 3 /1 1 ; Op4 (N−4 ,N−5) = −38 /11;
56 Op4 (N−3 ,N−3) =2 /1 1 ; Op4 (N−3 ,N−4) = −4 /11; Op4 (N−3 ,N−5) =2 /1 1 ;
57 Op4 = Op4 / d e l t a _ s ^ 4 ;
58

59 %% TIME LOOP
60

61 f o r i t =1: Nt
62

63 % 1 s t s t e p : compute t h e d e r i v a t i v e s o f X
64 D1X = [ D1*X ( : , 1 ) , D1*X ( : , 2 ) , D1*X ( : , 3 ) ] ;
65 D2X = [ D2*X ( : , 1 ) , D2*X ( : , 2 ) , D2*X ( : , 3 ) ] ;
66 D3X = [ D3*X ( : , 1 ) , D3*X ( : , 2 ) , D3*X ( : , 3 ) ] ;
67 D4X = [ D4*X ( : , 1 ) , D4*X ( : , 2 ) , D4*X ( : , 3 ) ] ;
68

69 % 2nd s t e p : compute t h e f l u i d v e l o c i t y a l o n g t h e f i b e r
70 DU( : , 1 ) = Sig ( 1 , 1 , i t ) *D1X ( : , 1 ) +Sig ( 1 , 2 , i t ) *D1X ( : , 2 ) +Sig ( 1 , 3 , i t ) *D1X

( : , 3 ) ;
71 DU( : , 2 ) = Sig ( 2 , 1 , i t ) *D1X ( : , 1 ) +Sig ( 2 , 2 , i t ) *D1X ( : , 2 ) +Sig ( 2 , 3 , i t ) *D1X

( : , 3 ) ;
72 DU( : , 3 ) = Sig ( 3 , 1 , i t ) *D1X ( : , 1 ) +Sig ( 3 , 2 , i t ) *D1X ( : , 2 ) +Sig ( 3 , 3 , i t ) *D1X

( : , 3 ) ;
73

74 % 3 rd s t e p : compute t h e t e n s i o n
75 NormXs = sum (D1X . ^ 2 , 2 ) ;
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76 A = −mu*sum (D1X. *DU, 2 ) ; % f l u i d c o n t r i b u t i o n
77 A = A + (7* sum (D2X. *D4X, 2 ) +6*sum (D3X. *D3X, 2 ) ) ; % bend ing

c o n t r i b u t i o n
78 A = A + (mu* b e t a ) *(1−NormXs ) ; % p e n a l i z a t i o n te rm
79 M = 2* L a p l D i r i c h l e t − s p d i a g s ( sum ( ( D2X ( 2 : N , : ) ) . ^ 2 , 2 ) , 0 ,N−1 ,N−1) ;
80 T = [ 0 ; M\A( 2 :N) ; 0 ] ;
81

82 % 4 t h s t e p : comput ing t h e r . h . s . o f t ime e v o l u t i o n
83 D1T = D1*T ;
84 Ufib = cumsum (DU, 1 ) * d e l t a _ s . . .
85 + ( 2 / mu) *[D1T . *D1X ( : , 1 ) ,D1T . *D1X ( : , 2 ) ,D1T . *D1X ( : , 3 ) ] . . .
86 + ( 1 / mu) *[T . *D2X ( : , 1 ) ,T . *D2X ( : , 2 ) ,T . *D2X ( : , 3 ) ] ;
87 DP = Sig ( : , : , i t ) *P−(P ’* Sig *P ) *P ;
88 i f t ==0 % 1 s t s t e p = E u l e r
89 RHS_X = X ( 3 : ( N−1) , : ) +d t * Uf ib ( 3 : ( N−1) , : ) ;
90 XXi = D1X ( 3 : ( N−1) , : ) ;
91 Pnew = P+d t *DP ;
92 e l s e % o t h e r w i s e = Adams−B a s h f o r t h
93 RHS_X = ( 4 / 3 ) *X ( 3 : ( N−1) , : ) − ( 1 /3 ) * Xold +(2* d t / 3 ) *(2* Uf ib ( 3 : ( N−1)

, : )−U f i b _ o l d ) ;
94 XXi = D1*(2*X−Xold ) ; XXi = XXi ( 3 : ( N−1) , : ) ;
95 Pnew = ( 4 / 3 ) *P− ( 1 / 3 ) * Pold +(2* d t / 3 ) *(2*DP−DPold ) ;
96 end
97

98 % 5 t h s t e p : i m p l i c i t t r e a t m e n t o f t h e bend ing e l a s t i c i t y
99 Axy = s p d i a g s ( XXi ( : , 1 ) . * XXi ( : , 2 ) , 0 ,N−3 ,N−3) *Op4 ;

100 Axz = s p d i a g s ( XXi ( : , 1 ) . * XXi ( : , 3 ) , 0 ,N−3 ,N−3) *Op4 ;
101 Ayz = s p d i a g s ( XXi ( : , 2 ) . * XXi ( : , 3 ) , 0 ,N−3 ,N−3) *Op4 ;
102 DD4 = [ s p d i a g s (1+XXi ( : , 1 ) . ^ 2 , 0 ,N−3 ,N−3) *Op4 Axy Axz ; . . .
103 Axy s p d i a g s (1+XXi ( : , 2 ) . ^ 2 , 0 ,N−3 ,N−3) *Op4 Ayz ; . . .
104 Axz Ayz s p d i a g s (1+XXi ( : , 3 ) . ^ 2 , 0 ,N−3 ,N−3) *Op4 ] ;
105 MM = speye ( 3 * (N−3) , 3 * (N−3) ) + ( 2 / 3 ) * ( d t / mu) *DD4;
106 Xnew = MM\ r e s h a p e (RHS_X , [ 3 * ( N−3) , 1 ] ) ;
107 Xnew = r e s h a p e ( Xnew , [ N−3 , 3 ] ) ;
108 Xnew = [ ( 4 8 / 1 1 ) *Xnew ( 1 , : ) − (52 /11) *Xnew ( 2 , : ) + ( 1 5 / 1 1 ) *Xnew ( 3 , : ) ; . . .
109 ( 2 8 / 1 1 ) *Xnew ( 1 , : ) − (23 /11) *Xnew ( 2 , : ) + ( 6 / 1 1 ) *Xnew ( 3 , : ) ; . . .
110 Xnew ;
111 ( 2 8 / 1 1 ) *Xnew ( end , : ) − (23 /11) *Xnew ( end −1 , : ) + ( 6 / 1 1 ) *Xnew ( end −2 , : )

; . . .
112 ( 4 8 / 1 1 ) *Xnew ( end , : ) − (52 /11) *Xnew ( end −1 , : ) + ( 1 5 / 1 1 ) *Xnew ( end −2 , : )

] ;
113

114 % 6 t h s t e p : u p d a t e
115 Xold = X ( 3 : ( N−1) , : ) ;
116 X = Xnew ;
117 U f i b _ o l d = Ufib ( 3 : ( N−1) , : ) ;
118 Pold = P ;
119 P = Pnew ;
120 DPold = DP ;
121 end
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D | Activated process

A thermally activated process is a process that overcomes an energy barrier to pass from an initial state to
a final state due to thermal fluctuations. A standard example refers to the minimal energy required for a
chemical reaction to occur (Kaufmyn, 2005; Van Kampen, 2007). Typically, the kinetic rate of a reaction for
any thermally activated process is given by the Arrhenius law:

k = Ae−Ea/(kb T ), (D.1)

where Ea is the activation energy, kb is the Boltzmann constant, T is the temperature in Kelvin and
A is a prescribed coefficient also known as pre-exponential factor or Arrhenius factor. The ratio k can be
understood as the probability that any given collision will result in a reaction. The energy of activation is the
amount of energy needed so that the reaction occurs: the larger the energy, the less probable the reaction.
Conversely, at high temperature, the molecules are more excited and the level of energy of the system is
higher. Hence, the probability that the reaction effectively happens increases.

Figure D.1: Left panel: the double-well potential energy of a the brownian particle as a function of its position. Right
panel: time evolution of the particle position.

The most simple mathematical modeling of an activation process is formulated in terms of a stochastic
equation known as the Kramers problem (Gardiner, 1985; Pavliotis, 2014; Risken, 1996, Chap. 5, Chap. 4).
This problem considers an over-damped Brownian particle within a double-well potential, whose dynamics
obeys the stochastic equation

dX(t)
dt

= −U′(X(t)) +
√

2κ η(t), (D.2)
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where κ = kbT represents the thermal energy, η is the white noise, characterized by 〈η(t)〉 = 0 and
〈η(t) η(t′)〉 = δ(t − t′), and U is the double-well potential represented in Fig. D.1, characterized by an energy
barrier ∆ separating the two wells.

Due to the presence of noise, the particles have non zero probability to jump from one well to the
other, even in the limit of a very small temperature. More precisely, standard textbook calculations show that
the timelaps between two consecutive jumps follows an exponential distribution: p(t) = τe−t/τ. τ is the mean
waiting time to pass from one well to the other well, and can be evaluated as

τ = π/(2
√

2∆) e∆/κ, (D.3)

the inverse of which is the jumping rate, analogous to the kinetic rate of chemical reactions.

Expression (D.3) can therefore be interpreted as an Arrhenius law, and can indeed be verified
numerically using Monte-Carlo simulations of the stochastic dynamics (D.2), as shown in Fig. D.2.
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Figure D.2: Mean activation time as a function of 1/κ. The numerical data is setting with red circles and the Arrhenius
law is showing in the dash-line.
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E | Weibull probabilistic distribution

Several random processes are described by a Weibull law (Rinne, 2008; Murthy et al., 2004). It is for instance,
used in industrial engineering to represent manufacturing and delivery times or failures manufacturing
systems.

The Weibull probability density function is

f (x; λ, k) =

 k
λ

(
x
λ

)k−1
e(−x/λ)k

x ≥ 0
0 x < 0,

(E.1)

where k > 0 is the shape parameter and λ > 0 is the scale parameter of the distribution.
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Figure E.1: Probability density function of a Weibull random variable

Generally, this distribution is used to model the “time-to-failure”. In this case, the shape parameter
leads to the following interpretation:

• When 0 < k < 1 the rate decreases in the time.

• When k = 1 the rate is contant over time. In this case the Weibull distribution is reduced to an
exponential distribution.

• When k ≥ 1 the rate increases with time.

Fig.E.1 shows the probability density function of a Weibull ramdom variable x for three different
values of the shape parameter k.
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This law corresponds to the waiting times between successive events distributed as a non-homogeneous
Poisson process with rate xk−1/λk. Conversely to a classical Poisson process (corresponding to k = 0) which
has a constant rate, the process considered here has a rate which decreases with the waiting time x when
k ≥ 1. It thus has memory: the longer we wait, the less likely it is to observe a new event.
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F | Derivation of a kinetic equation for
the fragmentation of fibers

Relevance of a kinetic description. We here derive a kinetic model for the dynamics of the population
of fibers, to account for the statistical measurements on fragmentation made along single trajectories, and
the two kinds of failures that the fibers undergo. The kinetic description relies on the number density n(`, t),
which we introduce as the average number of fragments of length ` at time t per unit volume. It has the
dimension of Length−3.

For a fixed length `, the kinetic evolution of this quantity between time t and t + ∆t involves two terms:
a sink term ∆n−, which corresponds to the number of fragmentations involving a fiber of initial size ` that has
occurred in this time interval, and a source term ∆n+, which comes from all fragmentations of size `′ > `
that lead to a fragment of size `. We assume that the time lag ∆t over which we sample this time evolution
is longer than the typical duration of a single fragmentation event, but shorter than the time between two
successive fragmentations.

This means, that the validity of this approach relies on two assumptions. First, it requires a clear
timescale separation between the duration of a single fragmentation event and the time separating two of them.
Second, it requires that fragmentation events are memoryless, so that they can be considered as a Poissonian
process. The latter point may seem restrictive, as we know from our data that fragmentation has memory, as
there are long-term correlations in the violent events encountered along tracer trajectories. Yet, as explained in
details in Chapter 5, the specific type of correlation between dangerous events involve waiting time statistics
that follow Weibull distributions. For this kind of distributions, the population dynamics can be described
in terms of rates in the large-time asymptotics, exactly as if the waiting times were standard exponentials,
and this is the correct physical justification beneath the use of kinetic equations. Further comments on this
point in a context of transport by turbulent flows can also be found in Krstulovic et al. (2013); Bec et al.
(2016).

Modeling failures. We now specify our model by implementing the two types of fragmentation processes.
Those associated to a tensile failure take place when the tension exceeds a critical value T?. They occur with
a rate λT(`; T?) that can be estimated either from Eq. (3.3) or from Eq. (3.4) of § 5.5. 11 A single event of
tensile failure always leads to the formation of two daughter fragments of equal lengths. As explained in
Chapter 5, this process can moreover cascade and lead to the formation of 2n fragments with n ≥ 1, each with
a length equal to `/2n. This leads to write the probability that a fiber of size ` breaks in `/`′ fragments of size
`′ as PT(`′|`) = pn δ(log2 `/`

′ − n).

The fragmentations associated to flexural failure happen when the curvature exceeds a critical value
κ?. This occurs with a rate λK(`; κ?) that account for the probability of observing a buckling event. The rates
are estimated in Eq. (4.12) and (4.13) of § 5.5. The resulting daughter size distribution is also estimated in
the paper and reads Pr(` → `′) in Eq. (4.15) and (4.16) of § 5.5. For clarity, we denote it as PK(`′|`) to single
out the contribution of flexural failures. As in the case of tensile failure, this daughter size distribution is only

11As explained in § 5.5, faithfully estimating the rate λT(`; T?) requires modeling the statistics of the velocity gradients, and this can
be heuristically achieved either using a stretched exponential or a log-normal distribution, leading to two possible models for λT(`; T?).
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defined for discrete values of `/`′. Note that the two rates λT and λK have the dimension of the inverse of
time.

Sources and sinks. We now estimate the source terms and the sink terms associated to the two fragmentation
processes. The sinks are easy to write: They correspond to the number of fragments of size ` that have
disappeared by fragmentation between times t and t + ∆t:

∆n− = −λT(`) ∆t n(`, t) − λK(`) ∆t n(`, t). (F.1)

The source terms are obtained by summing over all possible mother lengths `′ that break in a fragment of
size `. They read

∆n+ =
∑
`′>`

`′

`
λT(`′)∆t PT(`|`′) n(`′, t) +

∑
`′>`

`′

`
λK(`′)∆t PK(`|`′) n(`′, t). (F.2)

The fact that these terms are ∝ (`′/`) comes from the fact that each time a fragment of size `′ breaks, it
creates `′/` fragments of sizes `. Finally by writing n(`, t + ∆t) − n(`, t) = ∆n− + ∆n+ ≈ ∆t ∂tn(`, t), we get
the integro-differential equation

∂tn = − [λT(`) + λK(`)] n +
∑
`′>`

`′

`

[
λT(`′) PT(`|`′) + λK(`′) PK(`|`′)

]
n(`′, t). (F.3)

One can easily check that this equation conserves the total length of fibers L =
∑
` ` n(`, t) = const. This is a

consequence of the normalisation of the daughter size distribution
∑
` PK(`|`′) =

∑
` PT(`|`′) = 1.

Perspectives. The kinetic equation (F.3) is a kind of Smoluchowski equation (Smoluchowski, 1917; Gar-
diner and Chaturvedi, 1977; Gardiner, 1985). To further substantiate its relevance to describe our data we
could follow the tentative workplan:

• Integrate the full microscopic fragmentation process from DNS, including or not both the tensural and
the flexural failures for specific choices of T? and κ?, and construct a reference database for the mean
number of fragments n(`, t).

• Use the fitting formule described in the paper § 5.5 for the rates and the daughter size distribution, in
order to integrate (F.3) and obtain kinetic predictions that could be compared to DNS.

• Identify discrepancies and the mechanisms that might be responsible of them. Are differences present
only in the tail of n(`, t)? Are they present at all times? It could be that only some violent events lead
to deviations. It could also be that the kinetic approach works well only for asymptotic values of the
parameter F , T?, and κ?.

• Propose possible improvements of the kinetic approach that would account for the effect of long-term
correlations. Such deviations can be described using the more general population model described in
Chapter 5, which does not rely on validity of Poisson-type approximations.
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