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The fragmentation of small, brittle, flexible,
inextensible fibres is investigated in a fully developed,
homogeneous, isotropic turbulent flow. Such small
fibres spend most of their time fully stretched and
their dynamics follows that of stiff rods. They can
then break through tensile failure, i.e. when the
tension is higher than a given threshold. Fibres
bend when experiencing a strong compression.
During these rare and intermittent buckling events,
they can break under flexural failure, i.e. when the
curvature exceeds a threshold. Fine-scale massive
simulations of both the fluid flow and the fibre
dynamics are performed to provide statistics on these
two fragmentation processes. This gives ingredients
for the development of accurate macroscopic models,
namely the fragmentation rate and daughter-size
distributions, which can be used to predict the time
evolution of the fibre size distribution. Evidence
is provided for the generic nature of turbulent
fragmentation and of the resulting population
dynamics. It is indeed shown that the statistics of
break-up is fully determined by the probability
distribution of Lagrangian fluid velocity gradients.
This approach singles out that the only relevant
dimensionless parameter is a local flexibility which
balances flow stretching to the fibre elastic forces.
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1. Introduction
The fragmentation process, which consists in breaking a body in different pieces, is very common
and relevant to a wide range of phenomena in science and technology [1,2]. Natural examples
occurring at different length scales are numerous, from break-up in DNA chains [3,4] to meteors
in space [5]. Moreover, a precise understanding of the material properties involved in the
breaking process proves fundamental in several industrial applications, as in combustion [6] or
in wastewater treatment [7]. Traditionally, fragmentation is modelled from a macroscopic point
of view using statistical approaches (e.g. [8–11]) to predict the time evolution of fragment size
distributions from empirical observations. It relies on population balance models, which are based
on a set of PDEs giving the mean-field behaviour of a population of objects. Such models require
information on two quantities: the fragmentation rate (i.e. the frequency of the break-up events)
and the daughter size distribution (i.e. the size of all fragments generated by a break-up event).
New models for these two quantities are needed to account for the effects of fluctuations and fine
physical phenomena occurring during break-up.

We focus here on the fragmentation of brittle elongated particles with a constant length, which
will be called inextensible fibres in the following. From the point of view of material sciences,
a brittle material breaks under the action of an external force with little elastic deformation and
without plastic deformation [12]. In essence, break-up at the molecular level occurs when the local
stress overcomes the internal cohesion between molecules. In the case of brittle fragmentation, the
fracture induced by this rupture of equilibrium is assumed to propagate instantaneously at the
material level leading to the fragmentation of the whole object [10,13]. At the scale of the fibre,
this fragmentation can occur due to three different actions: tensile failure occurs when the external
force acts to stretch the fibre along its main axis; flexural failure happens when an external torque
induces a flexion perpendicular to the fibre main axis; torsional failure occurs when the fibre is
twisted by an applied torque. In the present case of brittle materials, we consider the simplest
approximation of the fragmentation process where failure happens as soon as a given threshold
is reached. In that case, three thresholds are defined for each failure mechanism: a stretch force in
tensile failure, a bending angle in flexural failure and a twisting angle in torsional failure. These
three thresholds are actually related to each other since they all depend on the material properties
and geometry (which govern fragmentation at the molecular level).

This study addresses more specifically the case of inextensible fibres immersed in a fluid. Such
situations are found in a number of applications. For example, in the paper industry, cellulose
fibres have been investigated in [14]. In a biological context, fibre dynamics have been used
to model diatom phytoplankton colonies in the ocean [15] and organic matter at fresh water
intakes [16]. Besides, we consider the case of fibres that are smaller compared with the smallest
fluid scale (the Kolmogorov scale in turbulent flows). In that case, the dynamics of a fibre is
determined by the action of three forces: bending elasticity, viscous drag and internal tension.
The fibre will mostly experience tensile and flexural failures due to its stretching or compression
by the flow, while torsional failure is negligible due to the fluid flow linearity at such small
scales. Bending elasticity and viscous drag act together to stretch the fibre, making it akin to a
stiff rod. Tensile failure then occurs when the local tension reaches values above a threshold.
However, when fibres change their directions and experience strong-enough compression, their
configurations can become buckled [17]: this is known as the buckling instability. The instability
has been well documented for simple steady shear flows [18], in which there exists a critical value
of the flexibility above which buckling occurs. Clearly, flexural failure can only occur when the
fibre buckles and the curvature overcomes a threshold.

The problem of turbulent fragmentation has been essentially addressed for droplets [19,20],
fractal flocs [21] and microscopic polymers [22,23]. The break-up of macroscopic fibres has
been essentially addressed in laminar flow [24]. Accurate predictions in turbulent flows require
extending such work to strongly fluctuating environments and interpreting them within a
statistical framework. Remarkably, a similar dynamics holds true for fibres immersed in highly
fluctuating environments. For instance, it was shown in [25], that the dynamics of inextensible
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Table 1. Numerical and physical parameters of the direct numerical simulation: N3 number of collocation points, ν kinematic
viscosity, �t time step, ε̄ average kinetic energy dissipation rate, η = ν3/4/ε̄1/4 Kolmogorov dissipative scale, τη =
ν 1/2/ε̄1/2 Kolmogorov time, urms root-mean square velocity, L= u3rms/ε̄ large-eddy length scale, τL = L/urms large-eddy
turnover time, Rλ = √

15 u2rms/(ν
1/2ε̄1/2) Taylor-based Reynolds number.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

N3 ν �t ε̄ η τη urms L τL Rλ
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

40963 10−5 6 × 10−4 3.8 × 10−3 7.16 × 10−4 0.051 0.19 1.86 9.68 731
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

fibres that are smaller than the Kolmogorov scale in turbulent flow follow most of the time that of
stiff rods. Deviations occur when the fibres experience strong-enough local compression, making
them buckle. Such events are very rare and intermittent, because of the long-term Lagrangian
correlations of turbulent velocity gradients. During these events, the stresses experienced by the
particles can be strong enough to lead to their break-up. In fact, turbulent flows are known to
generate very large velocity gradients, and those, in turn, may initiate a fragmentation process.
Our aim here is to provide such statistics on the mechanisms of fibre break-up in a turbulent flow
with dilute fibre suspensions, and specifically to characterize the statistics of the extrema of both
the tension and the curvature. Those statistics obtained with fine-scale simulations of individual
fibres are used as the basic ingredients, in order to develop accurate macroscopic models, relevant
for the above-mentioned natural and industrial applications. Such models predict the time
evolution of the fibre size distribution. A question that we want to address relates to the generic
nature of turbulent fragmentation processes and of the resulting population dynamics. Turbulent
fluctuations are indeed expected to be sufficiently generic to ensure universal behaviours, as for
instance observed in [26] for the fragmentation of cracking solids.

To address this problem, we resort to numerical approaches that couple highly resolved
turbulent flow simulations to fibre dynamics simulations using the slender-body equation (see
below). We focus on the case of inextensible fibres that are brittle, smaller than the Kolmogorov
scale and that do not have an effect on the fluid.

This paper is organized as follows. In §2, we give a brief description of our settings, including
the slender body theory used to model fibres and the numerical tools used to simulate their
dynamics in turbulent flow. We moreover give an overview of the mechanisms pertaining to
fibre fragmentation (tensile failure and flexural failure). In §3, we investigate tensile failure and
show that it occurs when the fibre is straight. Consequently, the tension is always maximal at
its middle and the fibre always breaks in two equal pieces. We also give predictions on the rate
at which such failures happen and compare them to numerics. In §4, we turn to flexural failure
that happens when the fibre buckles. Thanks to a linear analysis of this instability, we obtain
predictions on the associated break-up rates and on the resulting size distribution. Finally, in §5
we summarize our findings and draw some perspectives.

2. Model and numerical method
The objective is to investigate fragmentation processes in a fully developed, homogeneous,
isotropic turbulent flow. To that aim, we use direct numerical simulations of the three-dimensional
incompressible Navier–Stokes equation. We use the pseudo-spectral solver LaTu with 40963

collocation points and a third-order Runge–Kutta time marching [27]. A force is added at each
time step to keep the kinetic energy constant in the two first Fourier shells. This leads the velocity
field to reach a statistically stationary, homogeneous, isotropic turbulent state. The Eulerian
parameters of the simulation are summarized in table 1.

Once in a statistical steady state, the flow is seeded with several millions of tracers. Their
dynamics is integrated with the same time marching as the fluid and using a cubic interpolation
of the velocity field at their location. Their trajectories together with the fluid velocity gradients
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at their location are stored with a period 20�t ≈ 0.23 τη for a time duration of 63 000 �t ≈ 740 τη ≈
3.9 τL). These data are used a posteriori to integrate the dynamics of flexible fibres.

We consider very thin fibres that can be approximated as inextensible Euler–Bernoulli beams
immersed in a viscous fluid and whose dynamics is thus given by the local slender-body theory
(e.g. [18]). This model employs fibres with length � and circular cross-section with radius a; the
aspect ratio is ε = a/� � 1. The position and conformation of a given fibre is then described by a
curve s �→ X(s, t), parametrized by the arc-length coordinate s ∈ [−�/2, �/2]. We moreover assume
that the fibre’s inertia is negligible, so that its dynamics is obtained by balancing locally the
viscous drag with the fluid to tension and bending elasticity, so that

∂tX = u(X, t) + 1
μ

D

[
∂s(T ∂sX) − E ∂4

s X
]

, with |∂sX|2 = 1 (2.1)

where μ = 8π ρf ν

b
and D = I + ∂sX ∂sXT,

where the specific form of the mobility matrix D arises from the anisotropic drag exerted by the
fluid on the slender fibre. This equation is supplemented with the free-end boundary conditions
∂2

s X = 0 and ∂3
s X = 0 at s = ±�/2. In the above equations, ρf is the fluid mass density, E is the fibre’s

bending modulus (also called flexural rigidity) defined as E = YI (with Y the Young modulus
and I the fibre’s moment of inertia) and the parameter b = −ln(ε2e) is much larger than 1. The
fluid velocity field is denoted by u. We focus on situations where fibres have a very low volume
concentration. In this very diluted regime, they are passively transported by the fluid flow, and
hence do not influence the dynamics of the advecting velocity field u. The tension, denoted T(s, t),
is the Lagrange multiplier associated with the inextensibility constraint |∂sX|2 = 1. The tension is
intrinsically non-local. The equation it solves is obtained by requiring that ∂t|∂sX|2 = 0 and reads

∂2
s T − 1

2
|∂2

s X|2 T = 3 E |∂3
s X|2 + 7

2
E ∂2

s XT∂4
s X − μ

2
∂sXT

A(X, t) ∂sX, (2.2)

with the boundary conditions T = 0 at s = ±�/2. Here A denotes the velocity gradient
Aij(X, t) = ∂jui(X, t). This equation is equivalent to the Poisson equation satisfied by pressure in
incompressible fluid dynamics.

We assume that the fibres have a length � much smaller than the Kolmogorov dissipative
scale η. It is easily checked that their centre of mass X̄(t) then follow the dynamics of simple
tracers, namely dX̄/dt = u(X̄, t). Moreover, the fluid velocity variations along the fibres can be
linearized, u(X, t) ≈ u(X̄, t) + A(X̄, t) (X − X̄) with a local velocity gradient A that is constant along
the fibre. Under these assumptions, we integrate the local slender-body equation (2.1) along
the above-mentioned tracer trajectories, using the finite-difference scheme of [28] with N = 201
grid points along the fibre arc-length. The inextensibility constraint is enforced by a penalization
method. Time marching uses a semi-implicit Adams–Bashforth scheme with a Lagrangian time
step �tfib = 2.5 × 10−5. We use a linear interpolation in time to estimate the velocity gradient at a
frequency higher than the output from the fluid simulation. Note that the time step required for
the fibres is much smaller than that of the fluid. Indeed, we observe that, even by using a semi-
implicit scheme, the problem remains particularly stiff when E is small or, equivalently, μ is large.
As we will now see, these values of the parameters are of particular relevance.

In addition to the Reynolds number Rλ of the fluid flow, which is prescribed very large, the
dynamics of a given fibre depends on a single dimensionless parameter only: the non-dimensional
flexibility

F = 8π ρf ν �4

b E τη
. (2.3)

This parameter appears when non-dimensionalizing equation (2.1) with the two relevant scales
entering the dynamics and deformation of small fibres, namely their length � and the Kolmogorov
dissipative time τη. The non-dimensional flexibility can be understood as the ratio between the
time scale of the fibre elastic stiffness to that of the turbulent velocity gradients. For small values
of F , the fibre is very rigid and behaves as a rod, while for large F , it is very flexible and bends.
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Figure 1. Instantaneous configuration of a fibre with non-dimensional flexibilityF = 1.6 × 105 during a buckling event (b)
and as a stiff rod (a). Top: the colour rendering shows the fibre curvature. Bottom: tension as a function of the arc-length at the
same instant of time. (Online version in colour.)

In this second case, which corresponds to long fibres (small values of E or large values of μ), the
dynamics is much richer and the fibre develop into non-trivial geometrical configurations (see
top panels of figure 1).

When the fibre is in a fully straight state (figure 1a), one can assume that the tangent vector is
constant, i.e. ∂sX(s, t) = p(t) at all values of s. As shown in [28], its direction p is then a solution of
Jeffery’s equation for straight inertialess ellipsoidal rods

d
dt

p = A p − γ̇ p, with γ̇ (t) = pT
A(t) p. (2.4)

The orientation p is sheared and rotated by the velocity gradient tensor A, and the
stretching/compression component given by γ̇ is removed in order to fulfill the constraint |p| = 1.
The corresponding term in the right-hand side of (2.4) indeed originates from the tension in the
slender-body equation (2.1). The later is obtained by from (2.2) with ∂sX = p, leading to

T(s, t) = −μ

4
γ̇ (t)

(
s2 − �2

4

)
, (2.5)

meaning that the tension is maximal in the middle of the fibre and follows a parabolic shape with
the arc-length coordinate s (figure 1a). When the fibre is strongly compressed (γ̇ < 0), the straight
configuration might become unstable, leading to buckling (figure 1b). In that case, the tension can
display several local extrema (this will be discussed later in §a).

In turbulence, fibres are most of the time in a straight state and very rarely buckle [25]. It
was shown there that the buckling instability develops when the instantaneous value of γ̇ takes
large negative values. Besides, velocity gradients in turbulent flows can experience arbitrarily
large fluctuations. This impacts the dynamics of the fibre, and in particular the transition rates
between the straight and the buckled configurations. Explicitly, the fibres behave as stiff rods in
calm regions, and fibres bend/stretch more frequently in very fluctuating regions.

Large turbulent fluctuations may then initiate a break-up process. Indeed, strong stretching
and compression by the flow produces large values of the tension and curvature, respectively. As
anticipated, two mechanisms can then initiate a fragmentation: tensile failure when the fibre breaks
because the local tension is too high, and flexural failure when the fibre breaks due its curvature
being too large. Large positive values of the tension leading to tensile failure are attained when the
fibre is in a fully straight configuration and experiences a strong shear from the flow, as shown in
figure 1a. In this configuration, the bending energy is zero, thus the tension balance the stretching
due to velocity gradients. The solution of the tension is then a parabola, where the maximum is
attained in the middle of the fibre—as transpires from equation (2.5).
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Conversely, as is illustrated on the top panel of figure 1b, the curvature becomes very large
during buckling. Such large values of the curvature could lead to fragmentation through flexural
failure. These instabilities are typically dominated by a single mode with symmetric properties.
Such modes depends on the flexibility of the fibre and on the magnitude of the compression by
the flow. Depending on which of these two mechanisms is predominant, the fibres might break at
different locations. This could imply very different evolutions of the distribution evolution of the
fibre size distribution [29].

3. Fragmentation through tensile failure
We here start by investigating fragmentation due to large values of the tension. This occurs when
the maximal tension along the fibre is larger than a critical value T� that depends on its material
properties. To estimate the contribution of this mechanism to the fragmentation process, we need
to study both the rate λT(T�) at which a large tension is attained and the location where the
maximum is located on the fibre.

Large tensions are reached when the fibre experiences a strong stretching along its main axis
and is thus generally in a fully straight state. In that case, we have seen in the previous section (cf.
equation (2.5)) that the tension is a concave parabola with its maximum

Tmax = μ γ̇ �2

16
, (3.1)

reached at the middle of the fibre. As a consequence, a tensile failure will always break short fibres
in two equal pieces, giving a trivial daughter distribution. It should be noted here that this is true
for fibres without molecular defects (i.e. T� is constant along the fibre length).

Another consequence is that tensile failure occurs when the stretching rate along the fibre
exceeds a critical value, namely γ̇ > 16 T�/(μ�2), and thus when the velocity gradient reaches
strong positive values. Turbulent gradients along the Lagrangian path are known to display
very sharp fluctuations and oscillations. This implies that the rate at which a large value of γ̇

is exceeded, is approximately proportional to the probability distribution at this value, so that

λT(T�) ∝ Pr
(

γ̇ >
16 T�

(μ�2)

)
. (3.2)

The right-hand side involves the distribution of γ̇ and thus that of fluid velocity gradients. In
large-Reynolds-number turbulence, this distribution is fairly approximated by a lognormal with
far tails which are actually closer to a stretched exponential with an exponent ≈ 1/2—e.g. [30–33]).
Either of these two behaviours are compatible with our observations: For large values of the
tension it is not possible to distinguish one from the other. The inset of figure 2 shows the
probability density function of the stretching rate γ̇ . Its behaviour at positive values is well
represented by a lognormal distribution when γ̇ is of the order of τ−1

η with a far tail at γ̇ 	 τ−1
η

that rather approach a stretched exponential behaviour. As stressed in [34], the coefficients used in
fits have a non-trivial dependence upon the Reynolds number. From now on, we focus on the case
Rλ = 731, as chosen in our simulation. We will come back to this dependence in the conclusions.

These considerations suggest to use these two possibles forms to fit the tensile fragmentation
rate λT as a function of the physical parameters of the fibre. When T�/(μ�2) 	 τ−1

η , a stretched-
exponential form is expected to be more relevant, so that

λT(T�) ≈ λ0 exp

[
−a

(
τη T�

μ�2

)1/2
]

, (3.3)

with fitting parameters a frequency, λ0, and a dimensionless constant a. As can be seen in figure 2,
such a formula gives indeed a good approximation to numerical calculations of the tensile
fragmentation rates.
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Figure 2. Tensile fragmentation rate λT as a function of the critical tension T� for various values of the non-dimensional
flexibility F . The rate has been non-dimensionalized by τ−1

η while the x axis displays τη T�/(μ�2). The solid line is the
stretched-exponential fit (3.3) with λ0 = 14 /τη , a= 34 and τ ≈ τη . The dashed line is the lognormal fit (3.4) with λ′

0 =
0.13/τη , a′ = 1.12 and τ = 102 τη . Inset: Probability density function (PDF) of the stretching rate γ̇ at positive values (blue
bold solid line, blue online), together with a stretched exponential fit (thin line) and a lognormal fit (dashed line). (Online
version in colour.)

At T�/(μ�2) ∼ τ−1
η , as can be seen in figure 2, the tensile fragmentation rate behaves as a

lognormal, namely

λT(T�) ≈ λ′
0 exp

[
−a′

(
log

τ T�

μ�2

)2
]

, (3.4)

where a′ is a dimensionless fitting constant, and λ′
0 and τ are fitting parameters with dimensions

of a frequency and a time, respectively. The values of these parameters reported in the caption
suggest that, while λ′

0 is of the order of the Kolmogorov time scale τη, the time τ is 100 times
larger. This can be explained by the fact that Tmax(μ�2) ∼ γ̇ /16 and in turn, as seen in [25], typical
values of γ̇ are of the order of 0.1/τη leading to a factor of the order of 100.

To summarize this section, let us stress that tensile failure is here entirely prescribed by the
(intermittent) statistics of the velocity gradients. This is a stylized feature of our approach, and
provides a simplified framework to study fragmentation. Note that this assumption holds true
only for small fibres. When considering fibres larger than the Kolmogorov length scale, the
velocity gradient will not be uniform along the fibre. This implies in particular that the fibre could
be locally stretched and compressed at the same time and breaks in pieces of arbitrary sizes.

Also, it is important to notice that reaching large values of the tension requires γ̇ to locally
exceed a critical value that is ∝ �−2. Tensile failure thus becomes rarer and rarer when fibres
become smaller. In addition, the daughter population is typically centred over the half of the
mother size. This implies that a fragmentation process involving only tensile failure cannot
efficiently lead to the fast formation of small fragments. As we will see in the next section, this
strongly differs when flexural failure is involved. In that case, many small segments can be created
during a single event.

4. Fragmentation through flexural failure
Conversely to tensile failure, flexural failure displays a much more complicated behaviour. Such
break-ups happen when the fibre is bent and, more precisely, when the curvature becomes
larger than a given threshold. Then, there exists a location s along the fibre such that, at the
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Figure 3. (a) Time evolution of the maximal curvature κmax along a single turbulent tracer trajectory but for three different
values of the non-dimensional flexibilityF . The upper part shows the full trajectory, while the lower is a semilogarithmic time
zoom on the buckling event occurring at time t ≈ 337 τη . (b) Rates at which the maximal curvature exceeds given values κ�

(as labelled) as a function of the non-dimensional flexibility. Each dataset is fitted by both a stretched exponential (solid curves)
and by a lognormal (dashed curves). (Online version in colour.)

break-up time t�, one has |∂2
s X(s, t�)| ≥ κ�. Clearly, as the curvature is continuous with respect

to arc-length and time, such a break-up occurs at the first time when the maximum of curvature
κmax = maxs |∂2

s X| exceeds κ�. As anticipated in §2, these events happen when the fibre undergo a
buckling. Such an instability occurs when the instantaneous value of the stretching rate γ̇ defined
in equation (2.4) becomes large negative (compression). Figure 3a shows the time evolution
of the fibre’s maximal curvature along a Lagrangian trajectory for different values of F . It
can be seen that buckling events, for which κmax = 0, are very sparse and intermittent. Such
events are separated by long periods, which can be of the order of the large-eddy turnover
time, during which the fibre is fully straight, up to numerical precision. It is shown in [25]
that in turbulence, the rate at which buckling appears is similar to an activation process. More
precisely, it was found that the fibre buckles when its instantaneous flexibility Floc(t) = τη |γ̇ (t)|F
becomes larger than a critical value F�, provided that γ̇ (t) < 0. This leads to estimate the buckling
rate as

λBuckl ∝ Pr
(

γ̇ < − F�

(τη F)

)
. (4.1)

As in the case of tensile failure rates, the distribution of the stretching rate γ̇ can be approximated
either by a lognormal or by a stretched exponential, leading to approximations of the above
formula. We expect the rate of flexural failure to be upper bounded by this buckling rate.

However, for break-up to occur, we additionally require that the maximum curvature exceeds
κ�. The corresponding rates are shown in figure 3b as a function of the non-dimensional flexibility
F and for various values of the threshold κ�. Lognormal and stretched exponential functional
forms give good approximations with fitting parameters that depend on κ�. Understanding this
dependence requires investigating more closely the development of the instability. Figure 3c
shows the time growth of the maximum of curvature during one of these events for various values
of the non-dimensional flexibility. One observes that the increase is approximately exponential
with a rate that depends on F . Small values of κ� are reached during the instability growth and
it is thus needed to characterize further this regime in order to quantify how this affect rates.
The development of the buckling instability is furthermore of importance as flexural failure will
actually not happen when the threshold is exceeded but rather when it is for the first time.
At difference with tension that has fast fluctuations, the curvature has an on–off behaviour.
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As can be seen in figure 3c, the growth of κmax can be followed by a period during which it
remains at finite values for quite some time. This indicates that the rates shown in figure 3b
are actually overestimating the actual flexural failure rates. In the following, we provide more
accurate estimates.

(a) Linear analysis and relevance to turbulent flows
The buckling instability occurs when the fibre, initially in a straight configuration ∂sX ≡ p,
experiences a strong compression by the flow. This is likely to happen when the flow locally
displays a violent shear, so that the rodlike fibre is like a Jeffery orbit [35]: in that case, the rod
rotates and is not aligned with the flow. During such event, the fibre alternatively experience
stretching and compression along its main axis, giving it the opportunity to buckle. Performing a
linear stability analysis for such orbits is however complex. Indeed, upon buckling, the initially
straight fibre picks a specific trajectory among an infinite family. The selected trajectory depends
on the initial perturbation and is very sensitive to fine sub-leading details, such as thermal
noise [36], fibre or fluid inertia [37,38], or, as in our turbulent settings, the fact that the flow is
not a pure shear.

As we will see in the sequel, a simplified linear stability analysis already fairly describes
buckling events, meaning that we can avoid delving into the complicated context of Jeffery orbits.
Let us consider that the fibre experiences a time-constant compression γ̇ = pT

A p < 0 along its
direction. The base solution p(t) describes a rod-like solution to the slender body equation (2.1).
We introduce a perturbed solution as X(s, t) = X̄(t) + s p(t) + χ(s, t), where X̄(t) is the average
position of the fibre centre of mass and the perturbation χ is of small amplitude (i.e. |χ | � �).
For buckling, we are interested in perturbations that grow perpendicularly to the fibre direction.
The two transverse components of χ are decoupled and evolve as (e.g. [18])

1
|γ̇ | ∂tχ = χ + s ∂sχ + 1

4

(
s2 − �2

4

)
∂2

s χ − E
μ |γ̇ | ∂4

s χ , (4.2)

with the free-end boundary conditions ∂2
s χ = 0 and ∂3

s χ = 0 at s = ±�/2. This linear equation
admits solutions of the form χ (s, t) = eρ tχ̂(s), where χ̂ is the eigenfunction of the right-hand
side of (4.2) associated with the eigenvalue ρ. Once time is rescaled by γ̇ −1 and arc-length by
�, this eigenvalue problem depends on a unique non-dimensional parameter Floc = μ |γ̇ | �4/E,
which measures the ratio between the fluid compression and the elastic force. Because of the
presence of non-constant coefficients, there is no straightforward way to obtain the full spectrum
of eigenmodes as a function of the dimensionless flexibility Floc. Still, there are two trivial
solutions given by ρ/γ̇ = 1 with χ̂ = const. and ρ/γ̇ = 2 with χ̂ = a s and a constant. For these
two unstable modes, the fibre remains straight and does not buckle. To access more complicated
configurations, we rely on integrating numerically equation (4.2).

Figure 4a represents the 30 most unstable eigenvalues as a function of the non-dimensional
flexibility. A first non-straight mode becomes unstable when Floc >F�

1 ≈ 153. This threshold is in
agreement with [18]. This first growing mode, labelled as n = 1, is shown in figure 4b. When Floc
increases, there is a sequence of bifurcations with a change of the most unstable eigenfunction.
We label these modes with the number n of extrema that χ̂ contains (see panel b). The first
bifurcation is between order n = 1 and n = 2, which occurs at Floc =F�

2 ≈ 1840. When Floc further
increases, the most unstable modes are of higher order n. It also appears from figure 4b that
the amplitude of fluctuations decreases very fast as the arc-length coordinate s gets further from
the fibre centre. One finally observes that when Floc → ∞, the most unstable eigenvalues grow
as ρ/γ̇ ∝Floc.

In this asymptotics of large dimensionless flexibility, the small parameter F−1
loc multiplies the

highest-order derivatives. This indicates that the limit is singular but could actually be tackled
using a WKB (Wentzel, Kramers, Brillouin) perturbative approach (e.g. [39]). The WKB method
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Figure 4. (a) Thirty largest eigenvalues associated with the linear evolution (4.2) as a function of Floc. The two horizontal
lines at ρ = γ̇ and ρ = 2γ̇ show the two unstable straight modes. The three vertical lines atFloc =F�

1 ,F�
2 andF�

3 are
bifurcations above which the most unstable non-straight mode is n= 1, 2 and 3, respectively. The dashed line represents the
asymptotic behaviour ρ/γ̇ �Floc/1024 reached at large values. (b) Illustrations of the fibre geometric state in eigenmodes
of various orders n. (Online version in colour.)

suggests writing the solution as the exponential of an asymptotic series expansion

χ̂(s) ∼ exp

⎛
⎝1

ε

∑
p≥0

εpϕp(s)

⎞
⎠ , (4.3)

where ε =F−δ
loc is a small parameter and ϕp(s) are terms in the expansion. The exponent δ > 0 is

obtained by substituting the expansion (4.3) in (4.2) and balancing the leading-order terms. Far
from the fibre’s ends, one has

ρ

|γ̇ | = 1
4 ε2

(
s′2 − 1

4

)
(∂s′ϕ0)

2 − 1
Floc ε4 (∂s′ϕ0)

4 , (4.4)

with s′ = s/�. This gives ε =F−1/2
loc and ρ/|γ̇ | ∼Floc, meaning that δ = 1/2 and confirming the

observed linear behaviour of the eigenvalues in the asymptotics of Floc → ∞. Besides, when Floc
increases, the order n of the dominant mode becomes larger and the eigenfunction gets more
localized at |s′| � 1. This suggests expressing the dominant term as ϕ0(s′) = a0 + a1 s′ + a2 s′2 +
a3 s′3 + · · · . Now, using this expansion in (4.4) and balancing equal powers of s′, one obtains to
leading order

ρ

|γ̇ | = −Floc

16
a2

1 − Floc a4
1, so that a2

1 = − 1
32

±
√

1
1024

− ρ

|γ̇ |Floc
. (4.5)

This leading term contributes an exponential behaviour ∝ exp(±√Floc a1) at s′ = ±1 in the
eigenfunction χ̂ . When the real part of b is non-zero, this term diverges as a function of Floc
and this is incompatible with the imposed free-end boundary conditions. a1 should thus be a
pure imaginary number. This means that a2

1 is real negative, and with (4.5), we get necessarily
ρ/γ̇ <Floc/1024, the maximal eigenvalue corresponding to the case when the bound is reached.
This prediction gives the value 1/1024 for the constant of the linear behaviour of ρ, in agreement
with the measurements reported in figure 4. Note that for this specific eigenvalue, one obtains
a1 = i/

√
32 (i being the imaginary unit).
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Figure 5. (a) Typical asymptotic shape of the eigenfunctions consisting of a fast oscillation with a Gaussian envelope.
(b) Spectrum E(k)= |F[χ̂ ](k)|2 of the same function, where F[χ̂ ] designates the Fourier transform of χ̂ . It is a Gaussian
centred at k = k� with variance c/(2π 2).

Moving on to higher-order terms, one can easily check that contributions of the order of s′
vanish for the above value of a1. As to the terms ∝ s′2, they give

0 = 1
4

a2
1 − 1

16
(4 a2

2 + 6 a1a3) −
(

24 a2
1a2

2 + 12 a3
1a3

)
. (4.6)

Using a1 = i/
√

32, we get a2 = −1/8. This finally leads to writing ϕ0 ≈ a0 + i s′/
√

32 − s′2/8.
This asymptotic analysis suggest to write the eigenfunction of order n as

χ̂(s) =
⎧⎨
⎩

e−c (s/�)2
cos(2π k� s/�) for n = 2 k� + 1 odd,

e−c (s/�)2
sin(2π k� s/�) for n = 2 k� even,

(4.7)

whose typical shape is represented in figure 5a. The above asymptotic analysis shows that the
most unstable mode is characterized by an oscillating function with a wavelength k� and a
Gaussian envelope with a coefficient c. These two parameters are given by

k� �
√Floc

2π
√

32
and c �

√Floc

8
. (4.8)

To estimate numerically k� and c, we use the Fourier spectrum of the eigenfunction. It is defined as
the squared modulus of the coefficients of the Fourier transform of χ̂ . As illustrated in figure 5b,
the spectrum of the asymptotic form (4.7) is a Gaussian function of k. The wavenumber k� is
approximated as the mean associated with this distribution, while the coefficient c is deduced
from its variance. We use this approach to measure k� and c as a function of Floc for the
eigenfunctions obtained numerically from the integration of the linear system (4.2). The results
are displayed as solid curves on figure 6, together with the asymptotic predictions (4.8) displayed
as black dashed curves. The good agreement between these curves confirm the relevance of the
asymptotic analysis at large values of Floc that we consider here.

Following this linear analysis, we then perform the same kind of analysis to the case of fibres
that follow turbulent trajectories. To capture the dawn of the instability, we track fibres whose
curvature, after having almost relaxed to zero, grows again and exceeds a given threshold. We
use the fibre’s shape at the instant of time when the threshold is first reached as an estimate of the
growing mode. In such fluctuating settings, we make use of the instantaneous non-dimensional
flexibility Floc = τη|γ̇ |F . For each event, we measure k� and c from the Fourier spectrum of the
fibre shape. We then compute their average value conditioned on the observed value of Floc.
The resulting estimates are shown as symbols in figure 6 for three different values of F . Clearly,
these measurements show that the linear analysis reported above is able to describe the growth
of buckling modes in turbulent flows, assuming that the relevant parameter is given by the
instantaneous value of the non-dimensional flexibility.
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themost unstable mode. Results are shown both for the numerical integration of the linearized dynamics (solid curves) and for
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(b) Estimates for flexural fragmentation rates in turbulence
We now apply the above considerations to determine both the rate at which flexural failure occurs
and the resulting daughter size distribution upon fragmentation. We assume that the fibres are
brittle, so that they break as soon as their curvature exceeds a critical value κ�, which is relatively
small. Because of that, break-up happens while the fibre is still at the beginning of a buckling event
that can be described within the linear approximation. We moreover assume that the instability
growth is given by eigenvalues and eigenfunctions that are properly described by the large-
flexibility asymptotics of the previous subsection (this assumption is only valid if the growth
rate is large enough to consider that the shear γ̇ is constant during the instability and so F is
large).

(i) Fragmentation rate

The rate at which flexural failure occurs is the rate at which the maximal curvature along a fibre
exceeds for the first time the critical value κ�. A first condition for this to happen is to have the
fibre developing a buckling: this requires Floc = τη |γ̇ |F becoming larger than a critical value F�

at time t0, which marks the beginning of the event. After that, the instability grows exponentially
with a rate ρ � |γ̇ |Floc/1024. The maximal curvature also follows this growth, so that

κmax(t) � κmax(t0) exp

[
τη |γ̇ |2 F

1024
(t − t0)

]
. (4.9)

Of course, without an initial curvature nothing would happen. It is indeed required to have
initially a small deviation to the base state for the instability to develop. In physical situations,
several effects give such perturbations, including thermal noise, material inhomogeneities along
the fibres, a small extensibility, the fluid flow modifications due to the fibre, and more importantly,
the sub-leading turbulent fluctuations that are neglected when we assume that the fibre samples
a space-independent fluid velocity gradient. Such effects are clearly not in the model we use. Still,
in our simulations, the instability is triggered by a small numerical noise that comes either from
the accuracy of the method, from roundoff errors, or from the penalty approach that is used to
enforce inextensibility. This error is visible in figure 3c where, before the buckling starts, one has
κmax ≈ κ0 ≈ 2 × 10−10 �−1.

No matter how small they are, arbitrary values of curvature are not necessarily reached by all
buckling events. For instance, during the specific event shown in figure 3c, the maximal curvature
barely reaches κmax = 10−2 �−1 in the case of the fibre with the smallest flexibility. The growth rate
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Figure 7. (a) Complementary Cumulative Distribution Function (CDF) of the first time at which the fibres curvature hits a value
κ� = 10−6, shown for various values of the flexibility, as labelled. (Time is here in units of τη .) (b) Fragmentation rate λK as
a function of the dimensionless parameter (1/F ) log(κ�/κ0), with a reference curvature set to κ0 = 2 × 10−10. Symbols
correspond to different values of κ� and F . The solid line is the stretched-exponential fit (4.12) with λ0 = 0.055 τ−1

η and
a= 160. The dashed line is the lognormal fit (4.13) withλ′

0 = 0.06 τ−1
η , a′ = 0.11, and b′ = 13.12. (Online version in colour.)

is there too small or, equivalently, compression does not last long enough. During this very event,
the two other more flexible fibres reach much larger curvatures and saturate at κmax ≈ 30�−1.
These distinct behaviours originate from large differences in the instability growth rates. The time
during which the fibre is compressed is completely determined, either by the fluid flow through
the Lagrangian persistence time of velocity gradients, or by the evolution of the base orientation
p(t), which for instance perform a Jeffery orbit and tumbles. In both cases, the relevant time scale
during which the fibre is compressed is of the order of |γ̇ |−1.

A necessary condition for the fibre to break is thus that it reaches curvatures larger than κ� on a
time smaller than the compression duration � α |γ̇ |−1, where α is an order-unity constant. Using
the exponential law (4.9), one should thus have

t − t0 � 1024
τη |γ̇ |2 F log

(
κ�

κ0

)
< α |γ̇ |−1. (4.10)

This leads to the following estimate for the rate at which flexural failure occurs:

λK(κ�) ∝ Pr

(
γ̇ < −

[
(1024/α) log(κ�/κ0)

]
(τη F)

)
. (4.11)

This formula is similar to the buckling rate of equation (4.1) except that, this time, the critical
non-dimensional flexibility depends on κ�. Also, it suggests that λK is simply a function of
the dimensionless parameter (1/F) log(κ�/κ0) that can be fitted, as before, by either a stretched
exponential or a lognormal.

To test this prediction numerically, the main difficulty is to estimate this rate from finite-time
simulations. Depending on the values of the fibre flexibility and of the critical curvature, the
typical time needed for the curvature to become larger than κ� can be longer than the simulation
duration. Hence, to estimate this rate, we have rather measured the probability distribution of the
first time at which κmax hits κ�. The complementary cumulative distribution function is shown in
figure 7a for different flexibilities and a fixed value of the critical curvature. Clearly, one observes
that the first-hit time follows an exponential law. Fitting such laws gives a straightforward way
to estimate λK as a function of the two parameters F and κ�. The results are shown in figure 7b.
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One finds that when F is large enough, all data indeed collapse when represented as a function
of the non-dimensional parameter (1/F) log(κ�/κ0).

To propose fitting formulae for this rate, we rely on approximating the distribution of turbulent
velocity gradients by either a stretched exponential or a lognormal law, as was done for tensile
failure. In the first case, we write

λK(κ�) ≈ λ0 exp

[
−a

(
log(κ�/κ0)

F

)1/2
]

, (4.12)

with fitting parameters λ0 (with the dimension of a frequency) and a (dimensionless). As can be
seen in figure 7a, this a formula gives a rather good approximation. As to the lognormal fit, it reads

λK(κ�) ≈ λ′
0 exp

[
−a′

[
log

(
log(κ�/κ0)

F

)
+ b′

]2
]

, (4.13)

where the fitting parameters are this time a frequency λ′
0 and two dimensionless parameters a′

and b′. As for tension, the lognormal fit does not describe well data associated to the tail of the
distribution, that is small values of F or, equivalently, large values of κ�. These two fits provide
estimates of the rate at which flexural failure occurs as a function of all physical parameters,
including the fibre length, aspect ratio, Young modulus, the fluid velocity and mass density that
enter the definition of the non-dimensional flexibility F given in equation (2.3).

(ii) Daughter size distribution

We next turn our attention to understand the resulting sizes of the fragments obtained due to
flexural failure during buckling. Up to now, by focusing on the flexural failure rate, we have
addressed only a single (the first) break-up event. Because the fibre is curved according to a
given buckling mode of order n, the location where break-up occurs clearly depends on n.
When n is is odd, the break-up occurs at the centre of the fibre, which breaks in two equal
pieces. When n is even, the two resulting fragments have approximately sizes � × (n/2)/(n + 1)
and � × (n/2 + 1)/(n + 1). Actually, this primary break-up is sometimes followed by successive
fragmentations. We indeed find that, because of the continuing compression by the flow, the
unstable mode keeps on bending the small secondary pieces, so that their curvature still grows
and can reach again the critical value. This is illustrated for a specific buckling event in figure 8
where we have implemented in the numerical simulation the break-up process and the follow-up
of resulting fragments. In this case, the instability triggers the growth of a mode of order n = 14
(figure 8a). A first break-up occurs at s ≈ −0.02 �, but the resulting fragments undergo successive
fragmentations. This process finally leads to the formation of eight pieces. In this daughter
distribution, six fragments have sizes of the order of �/(n + 1) ≈ 0.07 �, the two remaining being
associated with the ends of the original fibre (figure 8c). As can be followed in figure 8b, the
locations where new break-ups occur follow the structures of the initial bending. Note that the
full process occurs on time scales of the order of τη, confirming that this corresponds to a single
buckling event. Note that for this specific event, we have tested how the fragmentation process
depends upon the numerical scheme, and in particular on the choice of the time step size �t. Our
results indicate that stability and convergence are ensured only when �t is much smaller than
the local time scale prescribed by the instability growth rate. In order to maintain a reasonable
computational cost, we have thus implemented a time-adaptive strategy that accounts for such a
constraint.

A single buckling event can hence lead to the creation of several small pieces, depending on
which wavenumber is excited. The selection of the most unstable mode depends on the local value
of the non-dimensional flexibility Floc = τη |γ̇ |F , which fluctuates with γ̇ . Following the results
of previous section, we expect for a given value of Floc that the most unstable mode is of order
n � 2k� � √Floc/(π

√
32). In that case, the daughter distribution will be peaked at �′ = �/(n + 1) �

π
√

32 �/
√Floc. Assuming that each buckling event leads to break the fibre in (n + 1) fragments

of equal size �′, we can draw an approximation for the daughter size distribution. Hence, the
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Figure 8. Evolution of a fibre during fragmentation. Panel (a) shows the growing mode by displaying, at the time of the first
break-up, the fibre’s curvature as a function of the arc-length s. Panel (c) represents the time evolution of the size distribution
(time growing from top to down); each horizontal plain line is a break-up event and segments correspond to fibre fragments.
(b) Three instantaneous configurations of the fragments at time t1, t2 and t3. Dark regions (blue online) correspond to a zero
curvature and light (yellow online) to values close to κ�. Note that on this pseudo three-dimensional representation, the arc-
length s runs from right to left. (Online version in colour.)

probability that a fibre of length � breaks in �/�′ fragments of size �′ reads

Pr(� → �′) ∝ �/�′

τη F
pγ̇

(
−32 π2(�/�′)2

τη F

)
, (4.14)

where pγ̇ (·) denotes the probability density function of the stretching rate γ̇ . Assuming as
previously that the later follows a stretched-exponential law, one obtains

Pr(� → �′) ∝ �/�′

F e−a (�/�′)/
√
F , (4.15)

where a is a positive constant. This particularly simple form suggests that the creation of small-
length fragments follows an activation-like distribution. In practical terms, this implies that
fragment sizes below a�/

√
F are statistically irrelevant and almost never observed. An equivalent

form can be written for lognormal statistics of γ̇ , namely

Pr(� → �′) ∝ �/�′

F e−a′ [log((�/�′)2/F)+b′]2

, (4.16)

with a′ and b′ constants. This second leads to the same qualitative considerations as above.
Finally, to illustrate the complexity of this process, we show in figure 9, the fibre length

distribution of fibres after the first fragmentation series. All fibres have initially the same length
� and the same non-dimensional flexibility F = 32 000. The simulation is done for a specific value
of the critical curvature (κ� = 10−6�−1), above which these fibres break. A fragmentation series
is defined as the set of break-ups occurring during the same buckling event, that is in a time
lag going from the initial development of the buckling instability to the time when all fragments
have relaxed to a fully straight configuration. The resulting distribution is clearly multi-modal. It
develops a peak at sizes �′ of the order of �/2, corresponding to fibres that broke only once during
this series. Such events represent approximately one half of the fragmentations. Another marked
peak is present at �′ ≈ �/12. This other maximum is an artefact of the representation, as smaller
are the segment, more numerous they are. Clearly, the number of fragments sharply tends to zero
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when their size becomes very small. Finally, the distribution displays finite values at intermediate
sizes, contributing a significative probability of obtaining fragments of sizes �/3, �/4, �/5, etc.

5. Conclusion and perspectives
We have studied the fragmentation processes undergone by small, inextensible, inertialess fibres
in turbulent flow, focusing on tensile and flexural failures. In both cases, we have shown that
break-up occurs when the fibre runs into a flow region of high strain, where it is either stretched
above internal cohesive forces or compressed, buckles and fractures under excessive bending.
By assuming an idealized description for internal fragmentation processes, we found that the
fragmentation rates can be expressed through the distribution of turbulent stretching rates. Using
standard functional approximations for such probability laws, we proposed fits for both the
tensile failure and the flexural failure rates that are calibrated and validated against the results
of direct numerical simulations in a high-Reynolds-number flow. Our analysis emphasizes the
central role played by the fibres non-dimensional flexibility in understanding how frequently
fragmentation occurs.

Besides rates, we reported results on daughter size distributions upon fragmentation. Tensile
failure always occurs when the fibre is stretched by the flow and thus has a fully straight
configuration. The tension is then maximal at its centre, so that this type of break-up always
produces two fragments with equal sizes. We found that the situation is more intricate in the
case of flexural failure. Fragmentation occurs when the fibre develops a buckling instability and
the resulting break-up process produces a size distribution that depends on the details of the
most unstable buckling mode. By performing a linear stability analysis, we provided estimates
of this size distribution that depend on the instantaneous fluid strain experienced by the fibre.
This approach indicates that the number of fragments produced upon break-up becomes larger
when the fibres experiences more violent compressions. Our analysis builds upon the results of
Vandenberghe & Villermaux [13] on how buckling affects the fragmentation of elastic slender
bodies. Specifically, they studied the fragmentation of elongated bodies considering the effect of
inertia (which has been neglected in this paper). They show the existence of an additional effect
in the fragmentation process: the propagation of elastic waves after a first break-up. The released
energy is able to increase further the curvature in the newly separated parts of the fibre, possibly
leading to successive secondary break-ups and to the formation of many small-size fragments. In
our work, we unveil another, possibly complementary mechanism where the smaller fragments
appear as fingerprints of the initial most-unstable growing mode. The case of inertial fibres with
a size that can be larger than the Kolmogorov scale will be studied in the future.
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An appealing prospective to our work concerns the Reynolds-number dependence of
fragmentation rates and processes. While our numerics limited themselves to a single level
of turbulence, our analysis can be easily extended to encompass intermittent descriptions
of turbulent statistics. At a qualitative level, one expects more violent fluctuations as the
Reynolds number increases. This implies that the rare events leading to the production
of many small fragments should have an increasing statistical relevance. At a quantitative
level, one can for instance apply the recent work of Buaria et al. [34], who carefully
investigated the Reynolds-number dependence of the probability distributions of velocity
gradients. Their findings can be straightforwardly used in our approach to write an
explicit Reynolds-number dependence of the fragmentation rates and associated daughter size
distributions.

Finally, it is important to stress again that, in this work, we have oversimplified the
microscopical break-up processes by considering that the fibres material is brittle and that
fibres are free of any molecular defects. In most realistic settings, the threshold value for each
break-up mechanism may vary along the fibre length while plastic effect cannot be neglected,
meaning that flexural failure may occur at locations that have been bended several times in
the fibre’s history. Even if they involve an extra parametrization, such effects can be easily
implemented and investigated numerically (e.g. [40]). We expect in particular interesting impacts
of the non-trivial time distribution of violent fluctuations. The turbulent fluid strain that is
experienced by a fibre along its Lagrangian trajectory is typically very intermittent in time, so
that buckling events are strongly correlated among each other. Nevertheless, generalizing to such
settings the analysis that has been developed here represents a real challenge. The strongest
bending is indeed expected to occur when the buckling instability has saturated, questioning
in that case the relevance of the linear analysis. Besides, the more general case of prolate/
oblate particles with a finite aspect ratio requires more subtle fragmentation scenario since it
can occur along two-dimensional planes, leading to fragments that can quickly display a more
complex shape.

Data accessibility. The data that support the findings of this study are available from the corresponding author
on request.
Authors’ contributions. S.A. carried out the numerics. S.A. and J.B. performed the data analysis. J.B. and C.H.
conceived and designed the study. S.A., J.B. and C.H. drafted the manuscript. All authors read and approved
the manuscript.
Competing interests. The authors declare that they have no competing interests.
Funding. This work was performed using HPC resources from GENCI-TGCC (grant no. t2016-2as027). S.A. has
been supported by EDF R&D (projects PTHL of MFEE and VERONA of LNHE) and by the French
government, through the Investments for the Future project UCAJEDI ANR-15-IDEX-01 managed by the
Agence Nationale de la Recherche.
Acknowledgements. We acknowledge H. Homann and C. Siewert for their essential help with the numerical
simulations, as well as G. Verhille and B. Favier for discussions.

References
1. Beysens D, Campi X, Pefferkorn E. 1995 Fragmentation phenomena. Singapore: World Scientific.
2. Hüfner J, Mukhopadhyay D. 1986 Fragmentation of nuclei, stones and asteroids. Phys. Lett. B

4, 373–376. (doi:10.1016/0370-2693(86)90397-7)
3. Nagata S. 2000 Apoptotic DNA fragmentation. Exp. Cell Res. 256, 12–18.

(doi:10.1006/excr.2000.4834)
4. Yan B et al. 2006 A unique role of the DNA fragmentation factor in maintaining genomic

stability. Proc. Natl Acad. Sci. USA 103, 1504–1509. (doi:10.1073/pnas.0507779103)
5. Keil K, Haack H, Scott ERD. 1994 Catastrophic fragmentation of asteroids: evidence from

meteorites. Planet. Space Sci. 42, 1109–1122. (doi:10.1016/0032-0633(94)90011-6)
6. Seames WS. 2003 An initial study of the fine fragmentation fly ash particle

mode generated during pulverized coal combustion. Fuel Proc. Tech. 81, 109–125.
(doi:10.1016/S0378-3820(03)00006-7)

http://dx.doi.org/doi:10.1016/0370-2693(86)90397-7
http://dx.doi.org/doi:10.1006/excr.2000.4834
http://dx.doi.org/doi:10.1073/pnas.0507779103
http://dx.doi.org/doi:10.1016/0032-0633(94)90011-6
http://dx.doi.org/doi:10.1016/S0378-3820(03)00006-7


18

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A378:20190398

................................................................

7. Verawaty M, Tait S, Pijuan M, Yuan Z, Bond PL. 2013 Breakage and growth towards a
stable aerobic granule size during the treatment of wastewater. Water Res. 47, 5338–5349.
(doi:10.1016/j.watres.2013.06.012)

8. Griffith L. 1943 A theory of the size distribution of particles in a comminuted system. Can. J.
Res. 21, 57–64. (doi:10.1139/cjr43a-005)

9. Horn AF, Merrill EW. 1984 Midpoint scission of macromolecules in dilute solution in
turbulent flow. Nature 312, 140–141. (doi:10.1038/312140a0)

10. Åström JA. 2006 Statistical models of brittle fragmentation. Adv. Phys. 55, 247–278.
(doi:10.1080/00018730600731907)

11. Babler MU, Biferale L, Lanotte AS. 2012 Breakup of small aggregates driven by turbulent
hydrodynamical stress. Phys. Rev. E 85, 025301. (doi:10.1103/PhysRevE.85.025301)

12. Rösler J, Harders H, Baeker M. 2007 Mechanical behaviour of engineering materials: metals,
ceramics, polymers, and composites. Berlin, Germany: Springer.

13. Vandenberghe N, Villermaux E. 2013 Geometry and fragmentation of soft brittle impacted
bodies. Soft Matter 9, 8162–8176. (doi:10.1039/c3sm50789k)

14. Lundell F, Söderberg L, Alfredsson P. 2011 Fluid mechanics of papermaking. Annu. Rev. Fluid
Mech. 43, 195–217. (doi:10.1146/annurev-fluid-122109-160700)

15. Ardekani N, Sardina G, Brandt L, Karp-Boss L, Bearon RN, Variano EA. 2017 Sedimentation
of inertia-less prolate spheroids in homogenous isotropic turbulence with application to non-
motile phytoplankton. J. Fluid Mech. 831, 655–674. (doi:10.1017/jfm.2017.670)

16. Santoso A, Ilmi B. 2018 Analysis of erosion rate on discharge slurry HDPE pipe in canal
water intake PLTGU Grati using CFD simulation. Int. J. Marine Eng. Innov. Res. 2, 253–260.
(doi:10.12962/j25481479.v2i4.4063)

17. Becker L, Shelley M. 2001 Instability of elastic filaments in shear flow yields first-normal-stress
differences. Phys. Rev. Lett. 87, 198301. (doi:10.1103/PhysRevLett.87.198301)

18. Lindner A, Shelley M. 2016 Elastic fibers in flows. In Fluid-structure interactions in low-Reynolds-
number flows (eds C Duprat, H Stone), ch. 5, pp. 168–192. Cambridge, UK: The Royal Society
of Chemistry. (doi.org/10.1039/9781782628491-00168).

19. Biferale L, Meneveau C, Verzicco R. 2014 Deformation statistics of sub-Kolmogorov-scale
ellipsoidal neutrally buoyant drops in isotropic turbulence. J. Fluid Mech. 754, 184–207.
(doi:10.1017/jfm.2014.366)

20. Ray SS, Vincenzi D. 2018 Droplets in isotropic turbulence: deformation and breakup statistics.
J. Fluid Mech. 852, 313–328. (doi:10.1017/jfm.2018.453)

21. Kobayashi M, Adachi Y, Ooi S. 1999 Breakup of fractal flocs in a turbulent flow. Langmuir 15,
4351–4356. (doi:10.1021/la980763o)

22. Vanapalli SA, Ceccio SL, Solomon MJ. 2006 Universal scaling for polymer chain scission in
turbulence. Proc. Natl Acad. Sci. USA 103, 16 660–16 665. (doi:10.1073/pnas.0607933103)

23. Pereira AS, Soares EJ. 2012 Polymer degradation of dilute solutions in turbulent drag reducing
flows in a cylindrical double gap rheometer device. J. Non-Newtonian Fluid Mech. 179, 9–22.
(doi:10.1016/j.jnnfm.2012.05.001)

24. Odell JA, Keller A. 1986 Flow-induced chain fracture of isolated linear macromolecules in
solution. J. Polym. Sci. 24, 1889–1916. (doi:10.1002/polb.1986.090240901)

25. Allende S, Henry C, Bec J. 2018 Stretching and buckling of small elastic fibers in turbulence.
Phys. Rev. Lett. 121, 154501. (doi:10.1103/PhysRevLett.121.154501)

26. Domokos G, Kun F, Sipos AA, Szabó T. 2015 Universality of fragment shapes. Sci. Rep. 5, 9147.
(doi:10.1038/srep09147)

27. Homann H, Dreher J, Grauer R. 2007 Impact of the floating-point precision and interpolation
scheme on the results of DNS of turbulence by pseudo-spectral codes. Comput. Phys. Commun.
177, 560–565. (doi:10.1016/j.cpc.2007.05.019)

28. Tornberg A, Shelley M. 2004 Simulating the dynamics and interactions of flexible fibers in
Stokes flows. J. Comput. Phys. 196, 8–40. (doi:10.1016/j.jcp.2003.10.017)

29. Grady D. 2010 Length scales and size distributions in dynamic fragmentation. Int. J. Fracture
163, 85–99. (doi:10.1007/s10704-009-9418-4)

30. Chevillard L, Roux SG, Lévêque E, Mordant N, Pinton J-F, Arnéodo A. 2003 Lagrangian
velocity statistics in turbulent flows: effects of dissipation. Phys. Rev. Lett. 91, 214502.
(doi:10.1103/PhysRevLett.91.214502)

31. Kailasnath P, Sreenivasan KR, Stolovitzky G. 1992 Probability density of velocity increments
in turbulent flows. Phys. Rev. Lett. 68, 2766. (doi:10.1103/PhysRevLett.68.2766)

http://dx.doi.org/doi:10.1016/j.watres.2013.06.012
http://dx.doi.org/doi:10.1139/cjr43a-005
http://dx.doi.org/doi:10.1038/312140a0
http://dx.doi.org/doi:10.1080/00018730600731907
http://dx.doi.org/doi:10.1103/PhysRevE.85.025301
http://dx.doi.org/doi:10.1039/c3sm50789k
http://dx.doi.org/doi:10.1146/annurev-fluid-122109-160700
http://dx.doi.org/doi:10.1017/jfm.2017.670
http://dx.doi.org/doi:10.12962/j25481479.v2i4.4063
http://dx.doi.org/doi:10.1103/PhysRevLett.87.198301
http://dx.doi.org/doi:10.1017/jfm.2014.366
http://dx.doi.org/doi:10.1017/jfm.2018.453
http://dx.doi.org/doi:10.1021/la980763o
http://dx.doi.org/doi:10.1073/pnas.0607933103
http://dx.doi.org/doi:10.1016/j.jnnfm.2012.05.001
http://dx.doi.org/doi:10.1002/polb.1986.090240901
http://dx.doi.org/doi:10.1103/PhysRevLett.121.154501
http://dx.doi.org/doi:10.1038/srep09147
http://dx.doi.org/doi:10.1016/j.cpc.2007.05.019
http://dx.doi.org/doi:10.1016/j.jcp.2003.10.017
http://dx.doi.org/doi:10.1007/s10704-009-9418-4
http://dx.doi.org/doi:10.1103/PhysRevLett.91.214502
http://dx.doi.org/doi:10.1103/PhysRevLett.68.2766


19

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A378:20190398

................................................................

32. Meneveau C, Sreenivasan K R. 1991 The multifractal nature of turbulent energy dissipation.
J. Fluid Mech. 224, 429–484. (doi:10.1017/S0022112091001830)

33. Donzis DA, Yeung PK, Sreenivasan KR. 2008 Dissipation and enstrophy in isotropic
turbulence: resolution effects and scaling in direct numerical simulations. Phys. Fluids 20,
045108. (doi:10.1063/1.2907227)

34. Buaria D, Pumir A, Bodenschatz E, Yeung PK. 2019 Extreme velocity gradients in turbulent
flows. New J. Phys. 21, 043004. (doi:10.1088/1367-2630/ab0756)

35. Jeffery GB. 1922 The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc.
Lond. A 102, 161–179. (doi:10.1098/rspa.1922.0078)

36. Munk T, Hallatschek O, Wiggins CH, Frey E. 2006 Dynamics of semiflexible polymers in a
flow field. Phys. Rev. E 74, 041911. (doi:10.1103/PhysRevE.74.041911)

37. Subramanian G, Koch DL. 2005 Inertial effects on fibre motion in simple shear flow. J. Fluid
Mech. 535, 383–414. (doi:10.1017/S0022112005004829)

38. Einarsson J, Candelier F, Lundell F, Angilella JR, Mehlig B. 2015 Rotation of a spheroid in a
simple shear at small Reynolds number. Phys. Fluids 27, 063301. (doi:10.1063/1.4921543)

39. Bender CM, Orszag SA. 1999 Advanced mathematical methods for scientists and engineers I:
asymptotic methods and perturbation theory. New York, NY: Springer.

40. Marchioli C, Soldati A. 2015 Turbulent breakage of ductile aggregates. Phys. Rev. E 91, 053003.
(doi:10.1103/PhysRevE.91.053003)

http://dx.doi.org/doi:10.1017/S0022112091001830
http://dx.doi.org/doi:10.1063/1.2907227
http://dx.doi.org/doi:10.1088/1367-2630/ab0756
http://dx.doi.org/doi:10.1098/rspa.1922.0078
http://dx.doi.org/doi:10.1103/PhysRevE.74.041911
http://dx.doi.org/doi:10.1017/S0022112005004829
http://dx.doi.org/doi:10.1063/1.4921543
http://dx.doi.org/doi:10.1103/PhysRevE.91.053003

	Introduction
	Model and numerical method
	Fragmentation through tensile failure
	Fragmentation through flexural failure
	Linear analysis and relevance to turbulent flows
	Estimates for flexural fragmentation rates in turbulence

	Conclusion and perspectives
	References

